Treatise on Water Science - 1st Edition - ISBN: 9780444531933, 9780444531995

Treatise on Water Science

1st Edition

Editor-in-Chiefs: Peter Wilderer
Hardcover ISBN: 9780444531933
eBook ISBN: 9780444531995
Imprint: Elsevier Science
Published Date: 28th January 2011
Page Count: 2102
Tax/VAT will be calculated at check-out

Institutional Access


Description

  • Editor-in-Chief
  • Editors
  • The Importance of Water Science in a World of Rapid Change: A Preface to the Treatise on Water Science
  • Volume 1: Management of Water Resources
    • Preface – Management of Water Resources
      • 1 The Water Crisis
      • 2 Why Studying Water Is So Important
      • 3 Current Global Water Balance
      • 4 Establishing Water Policy
      • 5 Predicting Future Demands for Water
      • 6 Drivers of Socioeconomic Growth
      • 7 Transboundary Conflicts
      • 8 River Basin Politics
      • 9 The Contents of Volume I
      • References
    • 1.01. Integrated Water Resources Management
      • 1.01.1 Introduction
      • 1.01.2 IWRM at the Watershed Level: Watershed Management
      • 1.01.3 IWRM at the Water-Use Systems Level: Agricultural Water Management
      • 1.01.4 IWRM at the Water-Use Systems Level: Water Supply and Sanitation Services
      • 1.01.5 IWRM at the Basin Level
      • 1.01.6 IWRM at the National Level: Policies and Governance
      • 1.01.7 IWRM at the Transnational and Global Level: Information Sharing, Cooperation, and Technical and Financial Assistance
      • 1.01.8 IWRM as a Meta-Concept
      • 1.01.9 History and Evolution of the Concept of IWRM
      • 1.01.10 Assessments and Critiques of the Concept of IWRM
      • References
      • Relevant Websites
    • 1.02. Governing Water: Institutions, Property Rights, and Sustainability
      • 1.02.1 Introduction
      • 1.02.2 International Organizations and Water Policy Debate
      • 1.02.3 Governing Water from the Ground Up
      • 1.02.4 Courts: Hiding in Plain View
      • 1.02.5 Conclusion: Reconceptualizing Water Governance
      • References
    • 1.03. Managing Aquatic Ecosystems
      • 1.03.1 Introduction
      • 1.03.2 Key Concepts
      • 1.03.3 Distribution and Classification of Aquatic Ecosystems
      • 1.03.4 Drivers of Change in Inland Aquatic Ecosystems
      • 1.03.5 Management Responses
      • 1.03.6 Conclusions
      • References
      • Relevant Websites
    • 1.04. Water as an Economic Good: Old and New Concepts and Implications for Analysis and Implementation
      • 1.04.1 Introduction
      • 1.04.2 Challenge One: Revisiting the Old Issue of the Indirect Effects of Investments in Major Water Projects
      • 1.04.3 Challenge Two: Managing Water as a Scarce Resource
      • 1.04.4 Conclusions
      • References
    • 1.05. Providing Clean Water: Evidence from Randomized Evaluations
      • 1.05.1 Introduction
      • 1.05.2 Water Quantity
      • 1.05.3 Water Quality
      • 1.05.4 Nonprice Determinants of Clean Water Adoption
      • 1.05.5 Potentially Scalable Approaches to Improving Water Quality
      • 1.05.6 Methods and Theory: Contributions of Randomized Evaluations of Domestic Water
      • 1.05.7 Conclusion
      • References
    • 1.06. Pricing Water and Sanitation Services
      • 1.06.1 Introduction
      • 1.06.2 The Costs of Providing W&S Services
      • 1.06.3 W&S Development Paths
      • 1.06.4 Objectives of Tariff Design
      • 1.06.5 Tariff Structures – the Alternatives
      • 1.06.6 Achieving Economic Efficiency and Recovering Capital Costs: Fundamentals of Dynamic Marginal Cost Pricing in the W&S Sector
      • 1.06.7 Subsidizing Capital Costs: Reaching the Poor
      • 1.06.8 Concluding Remarks
      • References
    • 1.07. Groundwater Management
      • 1.07.1 Introduction
      • 1.07.2 The Global Silent Revolution of Intensive Groundwater Use
      • 1.07.3 The Economics of Groundwater Use
      • 1.07.4 Regulatory Frameworks for Groundwater Multilevel Governance
      • 1.07.5 Institutional Aspects of Groundwater Management
      • 1.07.6 The Complex Concept of Groundwater Sustainability and Future Management Issues
      • 1.07.7 Conclusion
      • References
      • Relevant Websites
    • 1.08. Managing Agricultural Water
      • 1.08.1 Introduction and Overview
      • 1.08.2 Water Productivity in Agriculture
      • 1.08.3 Water Management and Competitiveness
      • 1.08.4 Water Resource Management, Institutions, and Implementation
      • 1.08.5 Water Management and the Environment
      • 1.08.6 Water for Agriculture and Poverty Reduction
      • 1.08.7 Water Management of Rainfed Agriculture
      • 1.08.8 Policy Actions for the Future
      • 1.08.9 Summary
      • References
      • Relevant Website
    • 1.09. Implementation of Ambiguous Water-Quality Policies
      • 1.09.1 Nonpoint Sources and the CWA
      • 1.09.2 Intrastate Cases
      • 1.09.3 Interstate Nonpoint Management
      • 1.09.4 Summary and Conclusions
      • References
    • 1.10. Predicting Future Demands for Water
      • 1.10.1 Water Supply and Demand
      • 1.10.2 Water-Use Data
      • 1.10.3 Water-Demand Relationships
      • 1.10.4 Demand Forecasting Techniques
      • 1.10.5 Example of a Regional Multisector Forecast
      • 1.10.6 Conclusion
      • References
    • 1.11. Risk Assessment, Risk Management, and Communication: Methods for Climate Variability and Change
      • 1.11.1 Introduction
      • 1.11.2 Background on Risk Assessment and Management
      • 1.11.3 Risk Management versus Consequence Management: The Upside of Risk
      • 1.11.4 Climate Risk
      • 1.11.5 Conclusion
      • References
  • Volume 2: The Science of Hydrology
    • Preface – The Science of Hydrology
      • References
    • 2.01. Global Hydrology
      • 2.01.1 Introduction
      • 2.01.2 Global Water Cycle
      • 2.01.3 Global Water-Balance Requirements
      • 2.01.4 Global Water Balance
      • 2.01.5 Challenges in the Global Hydrology and Research Gaps
      • References
    • 2.02. Precipitation
      • 2.02.1 Introduction
      • 2.02.2 Physical and Meteorological Framework
      • 2.02.3 Precipitation Observation and Measurement
      • 2.02.4 Precipitation modeling
      • 2.02.5 Precipitation and Engineering Design
      • References
      • Relevant Websites
    • 2.03. Evaporation in the Global Hydrological Cycle
      • 2.03.1 Introduction
      • 2.03.2 General Theory of Evaporation
      • 2.03.3 Regional and Equilibrium Evaporation
      • 2.03.4 Trends and Variability in Global Evaporation
      • 2.03.5 Summary and Conclusions
      • References
    • 2.04. Interception
      • 2.04.1 Introduction
      • 2.04.2 Importance of Interception
      • 2.04.3 Types of Interception
      • 2.04.4 Methods to Measure Interception
      • 2.04.5 Interception Models
      • 2.04.6 Consequences of Underestimating Interception for Hydrological Modeling and Water Resource Assessment
      • 2.04.7 Outlook
      • References
    • 2.05. Infiltration and Unsaturated Zone
      • 2.05.1 Introduction
      • 2.05.2 Soil Properties and Unsaturated Water Flow
      • 2.05.3 Infiltration Equations
      • 2.05.4 Measurements
      • 2.05.5 Scaling and Spatial Variability Considerations
      • 2.05.6 Summary and Conclusions
      • References
      • Relevant Websites
    • Mechanics of Groundwater Flow
      • 2.06.1 Introduction
      • 2.06.2 Brief History
      • 2.06.3 Hydraulic Head
      • 2.06.4 Darcy’s Law
      • 2.06.5 Steady Conservation of Mass
      • 2.06.6 Flow Types
      • 2.06.7 The Dupuit Approximation
      • 2.06.8 Potential Flow and the Discharge Vector
      • 2.06.9 One-Dimensional Flow
      • 2.06.10 One-Dimensional Radial Flow
      • 2.06.11 The Principle of Superposition
      • 2.06.12 The Stream Function and the Complex Potential
      • 2.06.13 Transient Flow
      • 2.06.14 Computer Models
      • 2.06.15 Discussion
      • References
      • Relevant Websites
    • 2.07. The Hydrodynamics and Morphodynamics of Rivers
      • 2.07.1 Early History of Hydrodynamics and Morphodynamics in Rivers and Channels
      • 2.07.2 State of the Art in Hydrodynamics and Morphodynamics
      • References
      • Relevant Websites
    • 2.08. Lakes and Reservoirs
      • 2.08.1 Morphometry, Hydrodynamics, Chemistry, and Biology of Lakes
      • 2.08.2 Fundamental Properties of Reservoirs
      • 2.08.3 Management, Protection, and Rehabilitation of Lakes and Reservoirs
      • 2.08.4 Current Knowledge Gaps and Future Research Needs
      • References
    • 2.09. Tracer Hydrology
      • 2.09.1 Introduction
      • 2.09.2 Principal Conception and Approaches of Tracer Hydrology
      • 2.09.3 Fundamentals of Environmental and Artificial Tracers
      • 2.09.4 Tracer Hydrology Applications
      • 2.09.5 Concluding Remarks
      • References
    • 2.10. Hydrology and Ecology of River Systems
      • 2.10.1 Introduction
      • 2.10.2 Key Hydrological Characteristics of River Networks
      • 2.10.3 River-Corridor Dynamics
      • 2.10.4 Aquatic Ecosystems
      • 2.10.5 Managing River Flows to Protect Riverine Ecosystems
      • References
    • 2.11. Hydrology and Biogeochemistry Linkages
      • 2.11.1 Introduction
      • 2.11.2 Hydrological Pathways on Drainage Basin Slopes
      • 2.11.3 Mountain Environments
      • 2.11.4 Within-River Processes
      • 2.11.5 Wetland Processes
      • 2.11.6 Lakes
      • 2.11.7 Groundwater
      • 2.11.8 Acidic Atmospheric Deposition – Acid Rain
      • 2.11.9 Summary and Future Considerations
      • 2.11.10 Additional Reading
      • References
    • 2.12. Catchment Erosion, Sediment Delivery, and Sediment Quality
      • 2.12.1 A Changing Context
      • 2.12.2 Sediment Budgets
      • 2.12.3 Documenting Catchment Sediment Budgets
      • 2.12.4 Modeling the Catchment Sediment Budget
      • 2.12.5 The Quality Dimension
      • References
      • Relevant Websites
    • 2.13. Field-Based Observation of Hydrological Processes
      • 2.13.1 Runoff Generation Processes
      • 2.13.2 Quantifying the Processes
      • 2.13.3 Conclusion
      • References
    • 2.14. Observation of Hydrological Processes Using Remote Sensing
      • 2.14.1 General introduction
      • 2.14.2 Water in the Atmosphere: Clouds and Water Vapor
      • 2.14.3 Water from the Atmosphere: Precipitation
      • 2.14.4 Water to the Atmosphere – Evaporation
      • 2.14.5 Water on the Land – Snow and Ice
      • 2.14.6 Water on the Land – Surface Water, River Flows, and Wetlands (Altimetry)
      • 2.14.7 Water in the Ground – Soil Moisture
      • 2.14.8 Water in the Ground – Groundwater (Gravity Observations)
      • 2.14.9 Optical RS of Water Quality in Inland and Coastal Waters
      • 2.14.10 Water Use in Agro- and Ecosystems
      • References
      • Relevant Websites
    • 2.15. Hydrogeophysics
      • 2.15.1 Introduction to Hydrogeophysics
      • 2.15.2 Geophysical Methods
      • 2.15.3 Petrophysical Models
      • 2.15.4 Parameter Estimation/Integration Methods
      • 2.15.5 Case Studies
      • 2.15.6 Summary and Outlook
      • References
    • 2.16. Hydrological Modeling
      • 2.16.1 Introduction
      • 2.16.2 Classification of Hydrological Models
      • 2.16.3 Conceptual Models
      • 2.16.4 Physically Based Models
      • 2.16.5 Parameter Estimation
      • 2.16.6 Data-Driven Models
      • 2.16.7 Analysis of Uncertainty in Hydrological Modeling
      • 2.16.8 Integration of Models
      • 2.16.9 Future Issues in Hydrological Modeling
      • References
      • Relevant Websites
    • 2.17. Uncertainty of Hydrological Predictions
      • 2.17.1 Introduction
      • 2.17.2 Definitions and Terminology
      • 2.17.3 Classification of Uncertainty and Reasons for the Presence of Uncertainty in Hydrology
      • 2.17.4 Uncertainty Assessment
      • 2.17.5 Classification of Approaches to Uncertainty Assessment
      • 2.17.6 Assessment of the Global Uncertainty of the Model Output
      • 2.17.7 Assessment of Data Uncertainty
      • 2.17.8 Assessment of Parameter Uncertainty
      • 2.17.9 Assessment of Model Structural Uncertainty
      • 2.17.10 Uncertainty Assessment as a Learning Process
      • 2.17.11 Conclusions
      • References
      • Relevant Websites
    • 2.18. Statistical Hydrology
      • 2.18.1 Introduction
      • 2.18.2 Analysis and Detection of Nonstationarity in Hydrological Time Series
      • 2.18.3 Extreme Value Analysis: Distribution Functions and Statistical Inference
      • 2.18.4 IDF Curves
      • 2.18.5 Copula Function for Hydrological Application
      • 2.18.6 Regional Frequency Analysis
      • References
      • Relevant Websites
    • 2.19. Scaling and Regionalization in Hydrology
      • 2.19.1 Introduction
      • 2.19.2 The Linear Statistical Approach
      • 2.19.3 Scaling in Hydrology
      • 2.19.4 Regionalization in Hydrology
      • 2.19.5 Concluding Remarks
      • References
    • 2.20. Stream–Groundwater Interactions
      • 2.20.1 Introduction
      • 2.20.2 Hydrology – Range of Interactions
      • 2.20.3 Chemical and Ecological Significance
      • 2.20.4 Field Study Methods and Models
      • 2.20.5 Summary and Future Challenges
      • References
      • Relevant Websites
  • Volume 3: Aquatic Chemistry and Biology
    • Preface – Aquatic Chemistry and Biology
      • The World of Aquatic Chemistry and Microbiology
    • 3.01. Sum Parameters: Potential and Limitations
      • 3.01.1 Introduction
      • 3.01.2 General Considerations and Scope
      • 3.01.3 DOC and TOC
      • 3.01.4 Oxygen Demand Parameters
      • 3.01.5 UVA and Visible Range Absorbance
      • 3.01.6 Organically Bound Halogens Adsorbable on Activated Carbon (AOX)
      • 3.01.7 Additional Sum Parameters
      • References
    • Trace Metal(loid)s (As, Cd, Cu, Hg, Pb, PGE, Sb, and Zn) and Their Species
      • 3.02.1 Introduction
      • 3.02.2 Natural Waters and Anthropogenic Influence
      • 3.02.3 Selected Elements
      • 3.02.4 Conclusions
      • References
    • 3.03. Sources, Risks, and Mitigation of Radioactivity in Water
      • 3.03.1 Introduction
      • 3.03.2 Establishing Limits on the Risk from Radionuclides
      • 3.03.3 Specific Radionuclides of Interest
      • 3.03.4 Mitigation Methods
      • 3.03.5 Geographic Areas of Special Concern
      • 3.03.6 Measuring Radioactivity in Water
      • 3.03.7 Conclusions
      • Reference
    • 3.04. Emerging Contaminants
      • 3.04.1 Introduction
      • 3.04.2 General Aspects: What Are the Emerging Contaminants and Micro-Pollutants?
      • 3.04.3 Parent Compounds, Metabolites, and Transformation Products
      • 3.04.4 A High Diversity of Chemicals Is Present in the Aquatic Environment
      • 3.04.5 Sources and Fate
      • 3.04.6 Examples of Individual Groups
      • 3.04.7 Endocrine Disrupting Chemicals
      • 3.04.8 Anticorrosive Additives – BT and TT
      • 3.04.9 Gasoline Additives – Methyl tert-Butyl Ether
      • 3.04.10 Perfluorinated Surfactants – PFOS and PFOA
      • 3.04.11 Personal-Care Products
      • 3.04.12 Fragrances and Odorants
      • 3.04.13 Disinfectants
      • 3.04.14 UV Filters
      • 3.04.15 Pharmaceuticals
      • 3.04.16 Engineered Nanoparticles
      • 3.04.17 Artificial Sweeteners
      • 3.04.18 Cyanotoxins
      • Referencs
      • Relevant Websites
    • 3.05. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems
      • 3.05.1 Introduction
      • 3.05.2 Definitions
      • 3.05.3 Major Types of Natural Colloids
      • 3.05.4 Major Types of Manufactured NPs
      • 3.05.5 Important Physico-Chemical Properties of Natural Colloid
      • 3.05.6 Intrinsic Properties of Manufactured NPs
      • 3.05.7 Environmental Fate and Behavior of Natural Colloids
      • 3.05.8 Environmental Fate and Behavior of Nanomaterials
      • 3.05.9 Conclusions and Recommendations
      • References
      • Relevant Websites
    • 3.06. Sampling and Conservation
      • 3.06.1 Introduction
      • 3.06.2 General Aspects and Requirements of Sampling Environmental Waters
      • 3.06.3 Handling and Conservation of Liquid Water Samples
      • 3.06.4 Water Sampling Using Traditional Methods
      • 3.06.5 Water Sampling Using Passive Sampling Technology
      • References
      • Relevant Website
    • 3.07. Measurement Quality in Water Analysis
      • 3.07.1 Introduction
      • 3.07.2 Terminology
      • 3.07.3 How to Set the Analytical Requirement
      • 3.07.4 Quality of Drinking Water Analysis
      • 3.07.5 How to Assess the Quality in a Lab
      • 3.07.6 Data Treatment
      • 3.07.7 Conclusions
      • Glossary
      • References
      • Relevant Websites
    • Identification of Microorganisms Using the Ribosomal RNA Approach and Fluorescence In Situ Hybridization
      • 3.08.1 Introduction
      • 3.08.2 The Full-Cycle rRNA Approach
      • 3.08.3 Fluorescence In Situ Hybridization
      • 3.08.4 Cell Counting
      • 3.08.5 From Cell Detection to Ecological Function
      • References
      • Relevant Websites
    • 3.09. Bioassays for Estrogenic and Androgenic Effects of Water Constituents
      • 3.09.1 Introduction
      • 3.09.2 In Vivo Bioeffect Assays
      • 3.09.3 In Vitro Assays at the Cellular Level
      • 3.09.4 Subcellular Assays
      • 3.09.5 Conclusions
      • References
    • 3.10. Online Monitoring Sensors
      • 3.10.1 Introduction
      • 3.10.2 Sensors for pH Measurements
      • 3.10.3 Sensors for Ionic Species
      • 3.10.4 Sensors for Dissolved Carbon Dioxide
      • 3.10.5 Dissolved Oxygen Sensors
      • 3.10.6 Sensors for Waterborne Ozone
      • 3.10.7 Sensors for Waterborne Hydrocarbons
      • 3.10.8 Sensors for Waterborne Organic Matter
      • 3.10.9 Waterborne Chlorophyll Sensors
      • 3.10.10 Sensors for Waterborne Pesticides
      • 3.10.11 Sensors for Waterborne Toxins
      • 3.10.12 Sensors for Waterborne Bacteria
      • 3.10.13 Turbidity Sensors
      • 3.10.14 Oxidation–Reduction Potential Sensors
      • 3.10.15 Conductivity Sensors
      • 3.10.16 Conclusions
      • References
      • Relevant Websites
    • 3.11. Standardized Methods for Water-Quality Assessment
      • 3.11.1 Introduction
      • 3.11.2 Features of Standards and Standardization
      • 3.11.3 Standardization Organizations Delivering Water-Testing Standards and Their TCs
      • 3.11.4 Items Covered by Standardization in the Field of Water Examination
      • 3.11.5 Resume and Outlook
      • 3.11.6 List of Standards
      • References
      • Relevant Websites
    • 3.12. Waterborne Parasitic Diseases: Hydrology, Regional Development, and Control
      • 3.12.1 Introduction
      • 3.12.2 Parasites Transmitted through Drinking Water
      • 3.12.3 Food-Borne Parasites Transmitted through Freshwater and Marine Foods
      • 3.12.4 Other Parasites with a Water-Dependent Life Cycle
      • 3.12.5 Parasites Penetrating Human Skin on Contact with Freshwater
      • 3.12.6 Water-Dependent Vector-Borne Parasites
      • 3.12.7 Environmental Factors Influencing the Dynamics of Water-Associated Parasites
      • 3.12.8 Synopsis
      • 3.12.9 Conclusion
      • References
      • Relevant Websites
    • 3.13. Bioremediation: Plasmid-Mediated Bioaugmentation of Microbial Communities – Experience from Laboratory-Scale Bioreactors
      • 3.13.1 Horizontal Gene Transfer-Mediated Bioaugmentation
      • 3.13.2 Plasmid pWW0
      • 3.13.3 Plasmid pJP4
      • 3.13.4 Plasmid pNB2
      • 3.13.5 Conclusions and Recommendations
      • References
    • Drinking Water Toxicology in Its Regulatory Framework
      • 3.14.1 Introduction
      • 3.14.2 From Chemical Hazards to Chemical Standards
      • 3.14.3 Panels and Institutions for Setting Drinking Water Standards
      • 3.14.4 Defining Standards to Prevent Human Health Risks from Drinking Water
      • 3.14.5 A Holistic Approach for Defining Quality Goals or Standards for Drinking Water
      • 3.14.6 Practical Regulation of Drinking-Water Quality
      • 3.14.7 The Author’s Short Conclusions
      • 3.14.8 Perspectives on Perception of Drinking Water
      • References
      • Relevant Websites
    • 3.15. Characterization Tools for Differentiating Natural Organic Matter from Effluent Organic Matter
      • 3.15.1 Introduction
      • 3.15.2 Advantages of Bulk Water Characterization over NOM/EfOM Isolates
      • 3.15.3 Bulk Water Analysis Protocols
      • 3.15.4 EfOM versus NOM Differences in Bulk Water Parameters
      • 3.15.5 Application of Protocols to Case Studies
      • 3.15.6 Summary
      • References
    • 3.16. Chemical Basis for Water Technology
      • 3.16.1 Introduction
      • 3.16.2 Goals and Processes for Water Treatment
      • 3.16.3 Key Chemical and Physical Principles/Phenomena for Water Treatment
      • 3.16.4 Summary of Processes Used in Water Treatment
      • 3.16.5 The Evolving Nature of Water Treatment
      • 3.16.6 Addressing the Treatment Goals – From the Perspective of the Chemical, Physical, and Biological Processes Involved
      • 3.16.7 Summary (Concluding Remarks)
      • References
      • Relevant Websites
  • Volume 4: Water-Quality Engineering
    • Preface – Water-Quality Engineering
    • 4.01. Water and Wastewater Management Technologies in the Ancient Greek and Roman Civilizations
      • 4.01.1 Aqueducts
      • 4.01.2 Minoan and Greek Aqueducts
      • 4.01.3 Roman Aqueducts
      • 4.01.4 Cisterns and Reservoirs
      • 4.01.5 Water Distribution Systems
      • 4.01.6 Fountains
      • 4.01.7 Drainage and Sewerage Systems and Toilets
      • 4.01.8 Discussion and Conclusions
      • References
    • 4.02. Membrane Filtration in Water and Wastewater Treatment
      • 4.02.1 Membrane Application to Water Purification
      • 4.02.2 Membrane Application to Wastewater Treatment
      • References
    • 4.03. Wastewater Reclamation and Reuse System
      • 4.03.1 Foundation of Water Reuse
      • 4.03.2 Water Reuse Terminology and Definitions
      • 4.03.3 Reclaimed Water Applications
      • 4.03.4 Water-Quality Considerations
      • 4.03.5 Treatment Technology
      • 4.03.6 Infrastructure for Water Reuse
      • 4.03.7 Source Control
      • 4.03.8 Future Directions for Water Reuse
      • References
    • 4.04. Seawater Use and Desalination Technology
      • 4.04.1 Introduction
      • 4.04.2 Seawater
      • 4.04.3 Brackish Water
      • 4.04.4 Desalination of Wastewater for Reuse
      • 4.04.5 Alternative Technologies
      • References
      • Relevant Websites
    • 4.05. Abstraction of Atmospheric Humidity
      • 4.05.1 Introduction
      • 4.05.2 Volume of Water in the Atmosphere
      • 4.05.3 Fundamentals of Rainfall Generation
      • 4.05.4 Innovative Abstraction Methods
      • 4.05.5 Rainwater Collection, Purification, and Storage
      • 4.05.6 Overarching Aspects
      • References
    • 4.06. Safe Sanitation in Low Economic Development Areas
      • 4.06.1 Introduction
      • 4.06.2 Historical Background
      • 4.06.3 Sanitation as Part of The Hydrological Cycle or Properly Closing the Water Loop
      • 4.06.4 Pollutants
      • 4.06.5 Sanitation in Low-Income Countries: A Complex Current Situation
      • 4.06.6 Wastewater Management Systems
      • 4.06.7 Wastewater Disposal versus Reintegration
      • 4.06.8 Sludge and Excreta Management
      • 4.06.9 Policy
      • 4.06.10 Funding
      • 4.06.11 Science and Innovation: Need to Develop Individual Knowledge
      • 4.06.12 Conclusions
      • References
      • Relevant Websites
    • 4.07. Source Separation and Decentralization
      • 4.07.1 Introduction
      • 4.07.2 Gray Water
      • 4.07.3 Urine
      • 4.07.4 Feces
      • 4.07.5 Combined Domestic Wastewater
      • 4.07.6 Outlook
      • References
      • Relevant Websites
    • 4.08. Modeling of Biological Systems
      • 4.08.1 Introduction
      • 4.08.2 Mathematical Modeling of Biochemical Processes
      • 4.08.3 Modeling of Biological Processes in Activated Sludge Systems
      • 4.08.4 Soil Filters
      • 4.08.5 Waste Stabilization Ponds
      • 4.08.6 Anaerobic Treatment
      • References
    • Urban Nonpoint Source Pollution Focusing on Micropollutants and Pathogens
      • 4.09.1 Introduction
      • 4.09.2 Physicochemical Characterization of Road Dust and Soakaway Sediment
      • 4.09.3 Pathogenic Pollution in a Seaside Park after CSO
      • 4.09.4 Summary
      • References
    • 4.10. Constructed Wetlands and Waste Stabilization Ponds
      • 4.10.1 Introduction
      • 4.10.2 Principles of CW and WSP Systems for Wastewater Treatment and Reuse
      • 4.10.3 Design Criteria and Operation of CW and WSP Systems
      • 4.10.4 Case Studies of CW and WSP
      • 4.10.5 Emerging Environmental Issues versus Potentials of CW and WSP
      • 4.10.6 Summary
      • References
    • 4.11. Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis
      • 4.11.1 Introduction
      • 4.11.2 Membrane Types and Properties
      • 4.11.3 Membrane Materials and Preparation
      • 4.11.4 Membrane Characterization
      • 4.11.5 Membrane Modules
      • 4.11.6 Basic Relationships and Performance
      • 4.11.7 Membrane Process Operation
      • 4.11.8 Conclusions
      • References
    • 4.12. Wastewater as a Source of Energy, Nutrients, and Service Water
      • 4.12.1 Introduction
      • 4.12.2 Resources of Interest
      • 4.12.3 Origin and Amounts of Resources
      • 4.12.4 Energy
      • 4.12.5 Nutrients
      • 4.12.6 Water Reuse
      • 4.12.7 Recovery Fosters Decentralization
      • 4.12.8 Summary and Outlook
      • References
    • 4.13. Advanced Oxidation Processes
      • 4.13.1 Introduction
      • 4.13.2 Fundamentals
      • 4.13.3 Guidance for Selecting an AOP
      • 4.13.4 Description of Processes
      • 4.13.5 Full-Scale Applications
      • References
      • Relevant Websites
    • 4.14. Biological Nutrient Removal
      • 4.14.1 Introduction
      • 4.14.2 System Configuration and Organism Groups
      • 4.14.3 Transformations in the Biological Reactor
      • 4.14.4 Wastewater Characterization
      • 4.14.5 Modeling Biological Behavior
      • 4.14.6 AS System Constraints
      • 4.14.7 Model Development – Completely Mixed Aerobic System
      • 4.14.8 The COD (or e−) Mass Balance
      • 4.14.9 The AS System Steady-State Equations for Real Wastewater
      • 4.14.10 Reactor Volume Requirements
      • 4.14.11 Determination of Reactor TSS Concentration
      • 4.14.12 Carbonaceous Oxygen Demand
      • 4.14.13 Daily Sludge Production
      • 4.14.14 System Design and Control
      • 4.14.15 Selection of Sludge Age
      • 4.14.16 Sludge Age – The Dominant Driver for Size
      • 4.14.17 Nitrification – Introduction
      • 4.14.18 Nitrification Biological Kinetics
      • 4.14.19 Nitrification Process Kinetics
      • 4.14.20 Factors Influencing Nitrification
      • 4.14.21 Nutrient Requirements for Sludge Production
      • 4.14.22 Nitrification Design Considerations
      • 4.14.23 Nitrification Design Example
      • 4.14.24 Biological Denitrification
      • 4.14.25 Denitrification Kinetics
      • 4.14.26 Development and Demonstration of Design Procedure
      • 4.14.27 System Volume and Oxygen Demand
      • 4.14.28 Biological Excess Phosphorus Removal
      • 4.14.29 Principles of Maximizing BEPR
      • 4.14.30 Model Development for BEPR
      • 4.14.31 Mixed Culture Steady-State Model
      • 4.14.32 Influence of BEPR on the System
      • 4.14.33 Factors Influencing Magnitude of BEPR
      • 4.14.34 Denitrification in NDBEPR Systems
      • 4.14.35 Denitrification in the UCT System
      • 4.14.36 Conclusion
      • References
    • 4.15. Biofilms in Water and Wastewater Treatment
      • 4.15.1 Introduction
      • 4.15.2 Part I: Biofilm Fundamentals
      • 4.15.3 Part II: Biofilm Reactors
      • 4.15.4 Part III. Undesirable Biofilms: Examples of Biofilm-Related Problems in the Water and Wastewater Industries
      • References
    • 4.16. Membrane Biological Reactors
      • 4.16.1 Introduction
      • 4.16.2 Aeration and Extractive Membrane Biological Reactors
      • 4.16.3 History and Fundamentals of Biosolid Separation MBR
      • 4.16.4 Worldwide Research and Development Challenges
      • 4.16.5 Worldwide Commercial Application
      • 4.16.6 Future Vision
      • 4.16.7 Conclusion
      • References
    • 4.17. Anaerobic Processes
      • 4.17.1 Anaerobic Process Fundamentals
      • 4.17.2 Selection and Design of Anaerobic Technology
      • 4.17.3 Interpretation and Operation of Anaerobic Systems
      • 4.17.4 Future Applications of Anaerobic Digestion
      • References
    • 4.18. Microbial Fuel Cells
      • 4.18.1 Resource Recovery from Wastewater
      • 4.18.2 Microbial Fuel Cells
      • 4.18.3 Thermodynamics of Microbial Fuel Cells
      • 4.18.4 Factors Determining the Decrease of Cell Voltage
      • 4.18.5 Materials and Architectures
      • 4.18.6 Electrochemically Active Microorganisms and Extracellular Electron Transfer
      • 4.18.7 Oxidative Processes
      • 4.18.8 Reductive Processes
      • 4.18.9 Challenges toward Improving MFC Efficiency
      • 4.18.10 Opportunities for Bioelectrochemical Systems
      • 4.18.11 Outlook
      • References
      • Relevant Website
    • 4.19. Water in the Pulp and Paper Industry
      • 4.19.1 Overview of Pulp and Papermaking
      • 4.19.2 Water in the Pulp and Paper industry
      • 4.19.3 Water Use
      • 4.19.4 Water Treatment
      • 4.19.5 Potentials and Limits of Water Saving
      • 4.19.6 Improving Water Efficiency in Paper Manufacturing Industries – 30 Years of Success
      • References
    • 4.20. Water in the Textile Industry
      • 4.20.1 Textile Industry
      • 4.20.2 Characteristic of Textile Water and Wastewater
      • 4.20.3 Treatment and Reuse of Textile Wastewater
      • 4.20.4 Conclusions
      • References
    • 4.21. Water Availability and Its Use in Agriculture
      • 4.21.1 Water Availability and Its Use in Agriculture
      • 4.21.2 Productive Use of Agricultural Water
      • 4.21.3 Environmental and Health Implications of Agricultural Water Use
      • 4.21.4 Water Governance
      • References
      • Relevant Websites
  • Subject Index
  • Authors

Key Features

  • Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content
  • Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors
  • Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth

Readership

Oceanographers, engineers, advanced students and others whose work concerns water research; water supply/utility companies; government agencies tasked with environmental resource management; and environmental science libraries

Table of Contents

  • Editor-in-Chief
  • Editors
  • The Importance of Water Science in a World of Rapid Change: A Preface to the Treatise on Water Science
  • Volume 1: Management of Water Resources
    • Preface – Management of Water Resources
      • 1 The Water Crisis
      • 2 Why Studying Water Is So Important
      • 3 Current Global Water Balance
      • 4 Establishing Water Policy
      • 5 Predicting Future Demands for Water
      • 6 Drivers of Socioeconomic Growth
      • 7 Transboundary Conflicts
      • 8 River Basin Politics
      • 9 The Contents of Volume I
      • References
    • 1.01. Integrated Water Resources Management
      • 1.01.1 Introduction
      • 1.01.2 IWRM at the Watershed Level: Watershed Management
      • 1.01.3 IWRM at the Water-Use Systems Level: Agricultural Water Management
      • 1.01.4 IWRM at the Water-Use Systems Level: Water Supply and Sanitation Services
      • 1.01.5 IWRM at the Basin Level
      • 1.01.6 IWRM at the National Level: Policies and Governance
      • 1.01.7 IWRM at the Transnational and Global Level: Information Sharing, Cooperation, and Technical and Financial Assistance
      • 1.01.8 IWRM as a Meta-Concept
      • 1.01.9 History and Evolution of the Concept of IWRM
      • 1.01.10 Assessments and Critiques of the Concept of IWRM
      • References
      • Relevant Websites
    • 1.02. Governing Water: Institutions, Property Rights, and Sustainability
      • 1.02.1 Introduction
      • 1.02.2 International Organizations and Water Policy Debate
      • 1.02.3 Governing Water from the Ground Up
      • 1.02.4 Courts: Hiding in Plain View
      • 1.02.5 Conclusion: Reconceptualizing Water Governance
      • References
    • 1.03. Managing Aquatic Ecosystems
      • 1.03.1 Introduction
      • 1.03.2 Key Concepts
      • 1.03.3 Distribution and Classification of Aquatic Ecosystems
      • 1.03.4 Drivers of Change in Inland Aquatic Ecosystems
      • 1.03.5 Management Responses
      • 1.03.6 Conclusions
      • References
      • Relevant Websites
    • 1.04. Water as an Economic Good: Old and New Concepts and Implications for Analysis and Implementation
      • 1.04.1 Introduction
      • 1.04.2 Challenge One: Revisiting the Old Issue of the Indirect Effects of Investments in Major Water Projects
      • 1.04.3 Challenge Two: Managing Water as a Scarce Resource
      • 1.04.4 Conclusions
      • References
    • 1.05. Providing Clean Water: Evidence from Randomized Evaluations
      • 1.05.1 Introduction
      • 1.05.2 Water Quantity
      • 1.05.3 Water Quality
      • 1.05.4 Nonprice Determinants of Clean Water Adoption
      • 1.05.5 Potentially Scalable Approaches to Improving Water Quality
      • 1.05.6 Methods and Theory: Contributions of Randomized Evaluations of Domestic Water
      • 1.05.7 Conclusion
      • References
    • 1.06. Pricing Water and Sanitation Services
      • 1.06.1 Introduction
      • 1.06.2 The Costs of Providing W&S Services
      • 1.06.3 W&S Development Paths
      • 1.06.4 Objectives of Tariff Design
      • 1.06.5 Tariff Structures – the Alternatives
      • 1.06.6 Achieving Economic Efficiency and Recovering Capital Costs: Fundamentals of Dynamic Marginal Cost Pricing in the W&S Sector
      • 1.06.7 Subsidizing Capital Costs: Reaching the Poor
      • 1.06.8 Concluding Remarks
      • References
    • 1.07. Groundwater Management
      • 1.07.1 Introduction
      • 1.07.2 The Global Silent Revolution of Intensive Groundwater Use
      • 1.07.3 The Economics of Groundwater Use
      • 1.07.4 Regulatory Frameworks for Groundwater Multilevel Governance
      • 1.07.5 Institutional Aspects of Groundwater Management
      • 1.07.6 The Complex Concept of Groundwater Sustainability and Future Management Issues
      • 1.07.7 Conclusion
      • References
      • Relevant Websites
    • 1.08. Managing Agricultural Water
      • 1.08.1 Introduction and Overview
      • 1.08.2 Water Productivity in Agriculture
      • 1.08.3 Water Management and Competitiveness
      • 1.08.4 Water Resource Management, Institutions, and Implementation
      • 1.08.5 Water Management and the Environment
      • 1.08.6 Water for Agriculture and Poverty Reduction
      • 1.08.7 Water Management of Rainfed Agriculture
      • 1.08.8 Policy Actions for the Future
      • 1.08.9 Summary
      • References
      • Relevant Website
    • 1.09. Implementation of Ambiguous Water-Quality Policies
      • 1.09.1 Nonpoint Sources and the CWA
      • 1.09.2 Intrastate Cases
      • 1.09.3 Interstate Nonpoint Management
      • 1.09.4 Summary and Conclusions
      • References
    • 1.10. Predicting Future Demands for Water
      • 1.10.1 Water Supply and Demand
      • 1.10.2 Water-Use Data
      • 1.10.3 Water-Demand Relationships
      • 1.10.4 Demand Forecasting Techniques
      • 1.10.5 Example of a Regional Multisector Forecast
      • 1.10.6 Conclusion
      • References
    • 1.11. Risk Assessment, Risk Management, and Communication: Methods for Climate Variability and Change
      • 1.11.1 Introduction
      • 1.11.2 Background on Risk Assessment and Management
      • 1.11.3 Risk Management versus Consequence Management: The Upside of Risk
      • 1.11.4 Climate Risk
      • 1.11.5 Conclusion
      • References
  • Volume 2: The Science of Hydrology
    • Preface – The Science of Hydrology
      • References
    • 2.01. Global Hydrology
      • 2.01.1 Introduction
      • 2.01.2 Global Water Cycle
      • 2.01.3 Global Water-Balance Requirements
      • 2.01.4 Global Water Balance
      • 2.01.5 Challenges in the Global Hydrology and Research Gaps
      • References
    • 2.02. Precipitation
      • 2.02.1 Introduction
      • 2.02.2 Physical and Meteorological Framework
      • 2.02.3 Precipitation Observation and Measurement
      • 2.02.4 Precipitation modeling
      • 2.02.5 Precipitation and Engineering Design
      • References
      • Relevant Websites
    • 2.03. Evaporation in the Global Hydrological Cycle
      • 2.03.1 Introduction
      • 2.03.2 General Theory of Evaporation
      • 2.03.3 Regional and Equilibrium Evaporation
      • 2.03.4 Trends and Variability in Global Evaporation
      • 2.03.5 Summary and Conclusions
      • References
    • 2.04. Interception
      • 2.04.1 Introduction
      • 2.04.2 Importance of Interception
      • 2.04.3 Types of Interception
      • 2.04.4 Methods to Measure Interception
      • 2.04.5 Interception Models
      • 2.04.6 Consequences of Underestimating Interception for Hydrological Modeling and Water Resource Assessment
      • 2.04.7 Outlook
      • References
    • 2.05. Infiltration and Unsaturated Zone
      • 2.05.1 Introduction
      • 2.05.2 Soil Properties and Unsaturated Water Flow
      • 2.05.3 Infiltration Equations
      • 2.05.4 Measurements
      • 2.05.5 Scaling and Spatial Variability Considerations
      • 2.05.6 Summary and Conclusions
      • References
      • Relevant Websites
    • Mechanics of Groundwater Flow
      • 2.06.1 Introduction
      • 2.06.2 Brief History
      • 2.06.3 Hydraulic Head
      • 2.06.4 Darcy’s Law
      • 2.06.5 Steady Conservation of Mass
      • 2.06.6 Flow Types
      • 2.06.7 The Dupuit Approximation
      • 2.06.8 Potential Flow and the Discharge Vector
      • 2.06.9 One-Dimensional Flow
      • 2.06.10 One-Dimensional Radial Flow
      • 2.06.11 The Principle of Superposition
      • 2.06.12 The Stream Function and the Complex Potential
      • 2.06.13 Transient Flow
      • 2.06.14 Computer Models
      • 2.06.15 Discussion
      • References
      • Relevant Websites
    • 2.07. The Hydrodynamics and Morphodynamics of Rivers
      • 2.07.1 Early History of Hydrodynamics and Morphodynamics in Rivers and Channels
      • 2.07.2 State of the Art in Hydrodynamics and Morphodynamics
      • References
      • Relevant Websites
    • 2.08. Lakes and Reservoirs
      • 2.08.1 Morphometry, Hydrodynamics, Chemistry, and Biology of Lakes
      • 2.08.2 Fundamental Properties of Reservoirs
      • 2.08.3 Management, Protection, and Rehabilitation of Lakes and Reservoirs
      • 2.08.4 Current Knowledge Gaps and Future Research Needs
      • References
    • 2.09. Tracer Hydrology
      • 2.09.1 Introduction
      • 2.09.2 Principal Conception and Approaches of Tracer Hydrology
      • 2.09.3 Fundamentals of Environmental and Artificial Tracers
      • 2.09.4 Tracer Hydrology Applications
      • 2.09.5 Concluding Remarks
      • References
    • 2.10. Hydrology and Ecology of River Systems
      • 2.10.1 Introduction
      • 2.10.2 Key Hydrological Characteristics of River Networks
      • 2.10.3 River-Corridor Dynamics
      • 2.10.4 Aquatic Ecosystems
      • 2.10.5 Managing River Flows to Protect Riverine Ecosystems
      • References
    • 2.11. Hydrology and Biogeochemistry Linkages
      • 2.11.1 Introduction
      • 2.11.2 Hydrological Pathways on Drainage Basin Slopes
      • 2.11.3 Mountain Environments
      • 2.11.4 Within-River Processes
      • 2.11.5 Wetland Processes
      • 2.11.6 Lakes
      • 2.11.7 Groundwater
      • 2.11.8 Acidic Atmospheric Deposition – Acid Rain
      • 2.11.9 Summary and Future Considerations
      • 2.11.10 Additional Reading
      • References
    • 2.12. Catchment Erosion, Sediment Delivery, and Sediment Quality
      • 2.12.1 A Changing Context
      • 2.12.2 Sediment Budgets
      • 2.12.3 Documenting Catchment Sediment Budgets
      • 2.12.4 Modeling the Catchment Sediment Budget
      • 2.12.5 The Quality Dimension
      • References
      • Relevant Websites
    • 2.13. Field-Based Observation of Hydrological Processes
      • 2.13.1 Runoff Generation Processes
      • 2.13.2 Quantifying the Processes
      • 2.13.3 Conclusion
      • References
    • 2.14. Observation of Hydrological Processes Using Remote Sensing
      • 2.14.1 General introduction
      • 2.14.2 Water in the Atmosphere: Clouds and Water Vapor
      • 2.14.3 Water from the Atmosphere: Precipitation
      • 2.14.4 Water to the Atmosphere – Evaporation
      • 2.14.5 Water on the Land – Snow and Ice
      • 2.14.6 Water on the Land – Surface Water, River Flows, and Wetlands (Altimetry)
      • 2.14.7 Water in the Ground – Soil Moisture
      • 2.14.8 Water in the Ground – Groundwater (Gravity Observations)
      • 2.14.9 Optical RS of Water Quality in Inland and Coastal Waters
      • 2.14.10 Water Use in Agro- and Ecosystems
      • References
      • Relevant Websites
    • 2.15. Hydrogeophysics
      • 2.15.1 Introduction to Hydrogeophysics
      • 2.15.2 Geophysical Methods
      • 2.15.3 Petrophysical Models
      • 2.15.4 Parameter Estimation/Integration Methods
      • 2.15.5 Case Studies
      • 2.15.6 Summary and Outlook
      • References
    • 2.16. Hydrological Modeling
      • 2.16.1 Introduction
      • 2.16.2 Classification of Hydrological Models
      • 2.16.3 Conceptual Models
      • 2.16.4 Physically Based Models
      • 2.16.5 Parameter Estimation
      • 2.16.6 Data-Driven Models
      • 2.16.7 Analysis of Uncertainty in Hydrological Modeling
      • 2.16.8 Integration of Models
      • 2.16.9 Future Issues in Hydrological Modeling
      • References
      • Relevant Websites
    • 2.17. Uncertainty of Hydrological Predictions
      • 2.17.1 Introduction
      • 2.17.2 Definitions and Terminology
      • 2.17.3 Classification of Uncertainty and Reasons for the Presence of Uncertainty in Hydrology
      • 2.17.4 Uncertainty Assessment
      • 2.17.5 Classification of Approaches to Uncertainty Assessment
      • 2.17.6 Assessment of the Global Uncertainty of the Model Output
      • 2.17.7 Assessment of Data Uncertainty
      • 2.17.8 Assessment of Parameter Uncertainty
      • 2.17.9 Assessment of Model Structural Uncertainty
      • 2.17.10 Uncertainty Assessment as a Learning Process
      • 2.17.11 Conclusions
      • References
      • Relevant Websites
    • 2.18. Statistical Hydrology
      • 2.18.1 Introduction
      • 2.18.2 Analysis and Detection of Nonstationarity in Hydrological Time Series
      • 2.18.3 Extreme Value Analysis: Distribution Functions and Statistical Inference
      • 2.18.4 IDF Curves
      • 2.18.5 Copula Function for Hydrological Application
      • 2.18.6 Regional Frequency Analysis
      • References
      • Relevant Websites
    • 2.19. Scaling and Regionalization in Hydrology
      • 2.19.1 Introduction
      • 2.19.2 The Linear Statistical Approach
      • 2.19.3 Scaling in Hydrology
      • 2.19.4 Regionalization in Hydrology
      • 2.19.5 Concluding Remarks
      • References
    • 2.20. Stream–Groundwater Interactions
      • 2.20.1 Introduction
      • 2.20.2 Hydrology – Range of Interactions
      • 2.20.3 Chemical and Ecological Significance
      • 2.20.4 Field Study Methods and Models
      • 2.20.5 Summary and Future Challenges
      • References
      • Relevant Websites
  • Volume 3: Aquatic Chemistry and Biology
    • Preface – Aquatic Chemistry and Biology
      • The World of Aquatic Chemistry and Microbiology
    • 3.01. Sum Parameters: Potential and Limitations
      • 3.01.1 Introduction
      • 3.01.2 General Considerations and Scope
      • 3.01.3 DOC and TOC
      • 3.01.4 Oxygen Demand Parameters
      • 3.01.5 UVA and Visible Range Absorbance
      • 3.01.6 Organically Bound Halogens Adsorbable on Activated Carbon (AOX)
      • 3.01.7 Additional Sum Parameters
      • References
    • Trace Metal(loid)s (As, Cd, Cu, Hg, Pb, PGE, Sb, and Zn) and Their Species
      • 3.02.1 Introduction
      • 3.02.2 Natural Waters and Anthropogenic Influence
      • 3.02.3 Selected Elements
      • 3.02.4 Conclusions
      • References
    • 3.03. Sources, Risks, and Mitigation of Radioactivity in Water
      • 3.03.1 Introduction
      • 3.03.2 Establishing Limits on the Risk from Radionuclides
      • 3.03.3 Specific Radionuclides of Interest
      • 3.03.4 Mitigation Methods
      • 3.03.5 Geographic Areas of Special Concern
      • 3.03.6 Measuring Radioactivity in Water
      • 3.03.7 Conclusions
      • Reference
    • 3.04. Emerging Contaminants
      • 3.04.1 Introduction
      • 3.04.2 General Aspects: What Are the Emerging Contaminants and Micro-Pollutants?
      • 3.04.3 Parent Compounds, Metabolites, and Transformation Products
      • 3.04.4 A High Diversity of Chemicals Is Present in the Aquatic Environment
      • 3.04.5 Sources and Fate
      • 3.04.6 Examples of Individual Groups
      • 3.04.7 Endocrine Disrupting Chemicals
      • 3.04.8 Anticorrosive Additives – BT and TT
      • 3.04.9 Gasoline Additives – Methyl tert-Butyl Ether
      • 3.04.10 Perfluorinated Surfactants – PFOS and PFOA
      • 3.04.11 Personal-Care Products
      • 3.04.12 Fragrances and Odorants
      • 3.04.13 Disinfectants
      • 3.04.14 UV Filters
      • 3.04.15 Pharmaceuticals
      • 3.04.16 Engineered Nanoparticles
      • 3.04.17 Artificial Sweeteners
      • 3.04.18 Cyanotoxins
      • Referencs
      • Relevant Websites
    • 3.05. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems
      • 3.05.1 Introduction
      • 3.05.2 Definitions
      • 3.05.3 Major Types of Natural Colloids
      • 3.05.4 Major Types of Manufactured NPs
      • 3.05.5 Important Physico-Chemical Properties of Natural Colloid
      • 3.05.6 Intrinsic Properties of Manufactured NPs
      • 3.05.7 Environmental Fate and Behavior of Natural Colloids
      • 3.05.8 Environmental Fate and Behavior of Nanomaterials
      • 3.05.9 Conclusions and Recommendations
      • References
      • Relevant Websites
    • 3.06. Sampling and Conservation
      • 3.06.1 Introduction
      • 3.06.2 General Aspects and Requirements of Sampling Environmental Waters
      • 3.06.3 Handling and Conservation of Liquid Water Samples
      • 3.06.4 Water Sampling Using Traditional Methods
      • 3.06.5 Water Sampling Using Passive Sampling Technology
      • References
      • Relevant Website
    • 3.07. Measurement Quality in Water Analysis
      • 3.07.1 Introduction
      • 3.07.2 Terminology
      • 3.07.3 How to Set the Analytical Requirement
      • 3.07.4 Quality of Drinking Water Analysis
      • 3.07.5 How to Assess the Quality in a Lab
      • 3.07.6 Data Treatment
      • 3.07.7 Conclusions
      • Glossary
      • References
      • Relevant Websites
    • Identification of Microorganisms Using the Ribosomal RNA Approach and Fluorescence In Situ Hybridization
      • 3.08.1 Introduction
      • 3.08.2 The Full-Cycle rRNA Approach
      • 3.08.3 Fluorescence In Situ Hybridization
      • 3.08.4 Cell Counting
      • 3.08.5 From Cell Detection to Ecological Function
      • References
      • Relevant Websites
    • 3.09. Bioassays for Estrogenic and Androgenic Effects of Water Constituents
      • 3.09.1 Introduction
      • 3.09.2 In Vivo Bioeffect Assays
      • 3.09.3 In Vitro Assays at the Cellular Level
      • 3.09.4 Subcellular Assays
      • 3.09.5 Conclusions
      • References
    • 3.10. Online Monitoring Sensors
      • 3.10.1 Introduction
      • 3.10.2 Sensors for pH Measurements
      • 3.10.3 Sensors for Ionic Species
      • 3.10.4 Sensors for Dissolved Carbon Dioxide
      • 3.10.5 Dissolved Oxygen Sensors
      • 3.10.6 Sensors for Waterborne Ozone
      • 3.10.7 Sensors for Waterborne Hydrocarbons
      • 3.10.8 Sensors for Waterborne Organic Matter
      • 3.10.9 Waterborne Chlorophyll Sensors
      • 3.10.10 Sensors for Waterborne Pesticides
      • 3.10.11 Sensors for Waterborne Toxins
      • 3.10.12 Sensors for Waterborne Bacteria
      • 3.10.13 Turbidity Sensors
      • 3.10.14 Oxidation–Reduction Potential Sensors
      • 3.10.15 Conductivity Sensors
      • 3.10.16 Conclusions
      • References
      • Relevant Websites
    • 3.11. Standardized Methods for Water-Quality Assessment
      • 3.11.1 Introduction
      • 3.11.2 Features of Standards and Standardization
      • 3.11.3 Standardization Organizations Delivering Water-Testing Standards and Their TCs
      • 3.11.4 Items Covered by Standardization in the Field of Water Examination
      • 3.11.5 Resume and Outlook
      • 3.11.6 List of Standards
      • References
      • Relevant Websites
    • 3.12. Waterborne Parasitic Diseases: Hydrology, Regional Development, and Control
      • 3.12.1 Introduction
      • 3.12.2 Parasites Transmitted through Drinking Water
      • 3.12.3 Food-Borne Parasites Transmitted through Freshwater and Marine Foods
      • 3.12.4 Other Parasites with a Water-Dependent Life Cycle
      • 3.12.5 Parasites Penetrating Human Skin on Contact with Freshwater
      • 3.12.6 Water-Dependent Vector-Borne Parasites
      • 3.12.7 Environmental Factors Influencing the Dynamics of Water-Associated Parasites
      • 3.12.8 Synopsis
      • 3.12.9 Conclusion
      • References
      • Relevant Websites
    • 3.13. Bioremediation: Plasmid-Mediated Bioaugmentation of Microbial Communities – Experience from Laboratory-Scale Bioreactors
      • 3.13.1 Horizontal Gene Transfer-Mediated Bioaugmentation
      • 3.13.2 Plasmid pWW0
      • 3.13.3 Plasmid pJP4
      • 3.13.4 Plasmid pNB2
      • 3.13.5 Conclusions and Recommendations
      • References
    • Drinking Water Toxicology in Its Regulatory Framework
      • 3.14.1 Introduction
      • 3.14.2 From Chemical Hazards to Chemical Standards
      • 3.14.3 Panels and Institutions for Setting Drinking Water Standards
      • 3.14.4 Defining Standards to Prevent Human Health Risks from Drinking Water
      • 3.14.5 A Holistic Approach for Defining Quality Goals or Standards for Drinking Water
      • 3.14.6 Practical Regulation of Drinking-Water Quality
      • 3.14.7 The Author’s Short Conclusions
      • 3.14.8 Perspectives on Perception of Drinking Water
      • References
      • Relevant Websites
    • 3.15. Characterization Tools for Differentiating Natural Organic Matter from Effluent Organic Matter
      • 3.15.1 Introduction
      • 3.15.2 Advantages of Bulk Water Characterization over NOM/EfOM Isolates
      • 3.15.3 Bulk Water Analysis Protocols
      • 3.15.4 EfOM versus NOM Differences in Bulk Water Parameters
      • 3.15.5 Application of Protocols to Case Studies
      • 3.15.6 Summary
      • References
    • 3.16. Chemical Basis for Water Technology
      • 3.16.1 Introduction
      • 3.16.2 Goals and Processes for Water Treatment
      • 3.16.3 Key Chemical and Physical Principles/Phenomena for Water Treatment
      • 3.16.4 Summary of Processes Used in Water Treatment
      • 3.16.5 The Evolving Nature of Water Treatment
      • 3.16.6 Addressing the Treatment Goals – From the Perspective of the Chemical, Physical, and Biological Processes Involved
      • 3.16.7 Summary (Concluding Remarks)
      • References
      • Relevant Websites
  • Volume 4: Water-Quality Engineering
    • Preface – Water-Quality Engineering
    • 4.01. Water and Wastewater Management Technologies in the Ancient Greek and Roman Civilizations
      • 4.01.1 Aqueducts
      • 4.01.2 Minoan and Greek Aqueducts
      • 4.01.3 Roman Aqueducts
      • 4.01.4 Cisterns and Reservoirs
      • 4.01.5 Water Distribution Systems
      • 4.01.6 Fountains
      • 4.01.7 Drainage and Sewerage Systems and Toilets
      • 4.01.8 Discussion and Conclusions
      • References
    • 4.02. Membrane Filtration in Water and Wastewater Treatment
      • 4.02.1 Membrane Application to Water Purification
      • 4.02.2 Membrane Application to Wastewater Treatment
      • References
    • 4.03. Wastewater Reclamation and Reuse System
      • 4.03.1 Foundation of Water Reuse
      • 4.03.2 Water Reuse Terminology and Definitions
      • 4.03.3 Reclaimed Water Applications
      • 4.03.4 Water-Quality Considerations
      • 4.03.5 Treatment Technology
      • 4.03.6 Infrastructure for Water Reuse
      • 4.03.7 Source Control
      • 4.03.8 Future Directions for Water Reuse
      • References
    • 4.04. Seawater Use and Desalination Technology
      • 4.04.1 Introduction
      • 4.04.2 Seawater
      • 4.04.3 Brackish Water
      • 4.04.4 Desalination of Wastewater for Reuse
      • 4.04.5 Alternative Technologies
      • References
      • Relevant Websites
    • 4.05. Abstraction of Atmospheric Humidity
      • 4.05.1 Introduction
      • 4.05.2 Volume of Water in the Atmosphere
      • 4.05.3 Fundamentals of Rainfall Generation
      • 4.05.4 Innovative Abstraction Methods
      • 4.05.5 Rainwater Collection, Purification, and Storage
      • 4.05.6 Overarching Aspects
      • References
    • 4.06. Safe Sanitation in Low Economic Development Areas
      • 4.06.1 Introduction
      • 4.06.2 Historical Background
      • 4.06.3 Sanitation as Part of The Hydrological Cycle or Properly Closing the Water Loop
      • 4.06.4 Pollutants
      • 4.06.5 Sanitation in Low-Income Countries: A Complex Current Situation
      • 4.06.6 Wastewater Management Systems
      • 4.06.7 Wastewater Disposal versus Reintegration
      • 4.06.8 Sludge and Excreta Management
      • 4.06.9 Policy
      • 4.06.10 Funding
      • 4.06.11 Science and Innovation: Need to Develop Individual Knowledge
      • 4.06.12 Conclusions
      • References
      • Relevant Websites
    • 4.07. Source Separation and Decentralization
      • 4.07.1 Introduction
      • 4.07.2 Gray Water
      • 4.07.3 Urine
      • 4.07.4 Feces
      • 4.07.5 Combined Domestic Wastewater
      • 4.07.6 Outlook
      • References
      • Relevant Websites
    • 4.08. Modeling of Biological Systems
      • 4.08.1 Introduction
      • 4.08.2 Mathematical Modeling of Biochemical Processes
      • 4.08.3 Modeling of Biological Processes in Activated Sludge Systems
      • 4.08.4 Soil Filters
      • 4.08.5 Waste Stabilization Ponds
      • 4.08.6 Anaerobic Treatment
      • References
    • Urban Nonpoint Source Pollution Focusing on Micropollutants and Pathogens
      • 4.09.1 Introduction
      • 4.09.2 Physicochemical Characterization of Road Dust and Soakaway Sediment
      • 4.09.3 Pathogenic Pollution in a Seaside Park after CSO
      • 4.09.4 Summary
      • References
    • 4.10. Constructed Wetlands and Waste Stabilization Ponds
      • 4.10.1 Introduction
      • 4.10.2 Principles of CW and WSP Systems for Wastewater Treatment and Reuse
      • 4.10.3 Design Criteria and Operation of CW and WSP Systems
      • 4.10.4 Case Studies of CW and WSP
      • 4.10.5 Emerging Environmental Issues versus Potentials of CW and WSP
      • 4.10.6 Summary
      • References
    • 4.11. Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis
      • 4.11.1 Introduction
      • 4.11.2 Membrane Types and Properties
      • 4.11.3 Membrane Materials and Preparation
      • 4.11.4 Membrane Characterization
      • 4.11.5 Membrane Modules
      • 4.11.6 Basic Relationships and Performance
      • 4.11.7 Membrane Process Operation
      • 4.11.8 Conclusions
      • References
    • 4.12. Wastewater as a Source of Energy, Nutrients, and Service Water
      • 4.12.1 Introduction
      • 4.12.2 Resources of Interest
      • 4.12.3 Origin and Amounts of Resources
      • 4.12.4 Energy
      • 4.12.5 Nutrients
      • 4.12.6 Water Reuse
      • 4.12.7 Recovery Fosters Decentralization
      • 4.12.8 Summary and Outlook
      • References
    • 4.13. Advanced Oxidation Processes
      • 4.13.1 Introduction
      • 4.13.2 Fundamentals
      • 4.13.3 Guidance for Selecting an AOP
      • 4.13.4 Description of Processes
      • 4.13.5 Full-Scale Applications
      • References
      • Relevant Websites
    • 4.14. Biological Nutrient Removal
      • 4.14.1 Introduction
      • 4.14.2 System Configuration and Organism Groups
      • 4.14.3 Transformations in the Biological Reactor
      • 4.14.4 Wastewater Characterization
      • 4.14.5 Modeling Biological Behavior
      • 4.14.6 AS System Constraints
      • 4.14.7 Model Development – Completely Mixed Aerobic System
      • 4.14.8 The COD (or e−) Mass Balance
      • 4.14.9 The AS System Steady-State Equations for Real Wastewater
      • 4.14.10 Reactor Volume Requirements
      • 4.14.11 Determination of Reactor TSS Concentration
      • 4.14.12 Carbonaceous Oxygen Demand
      • 4.14.13 Daily Sludge Production
      • 4.14.14 System Design and Control
      • 4.14.15 Selection of Sludge Age
      • 4.14.16 Sludge Age – The Dominant Driver for Size
      • 4.14.17 Nitrification – Introduction
      • 4.14.18 Nitrification Biological Kinetics
      • 4.14.19 Nitrification Process Kinetics
      • 4.14.20 Factors Influencing Nitrification
      • 4.14.21 Nutrient Requirements for Sludge Production
      • 4.14.22 Nitrification Design Considerations
      • 4.14.23 Nitrification Design Example
      • 4.14.24 Biological Denitrification
      • 4.14.25 Denitrification Kinetics
      • 4.14.26 Development and Demonstration of Design Procedure
      • 4.14.27 System Volume and Oxygen Demand
      • 4.14.28 Biological Excess Phosphorus Removal
      • 4.14.29 Principles of Maximizing BEPR
      • 4.14.30 Model Development for BEPR
      • 4.14.31 Mixed Culture Steady-State Model
      • 4.14.32 Influence of BEPR on the System
      • 4.14.33 Factors Influencing Magnitude of BEPR
      • 4.14.34 Denitrification in NDBEPR Systems
      • 4.14.35 Denitrification in the UCT System
      • 4.14.36 Conclusion
      • References
    • 4.15. Biofilms in Water and Wastewater Treatment
      • 4.15.1 Introduction
      • 4.15.2 Part I: Biofilm Fundamentals
      • 4.15.3 Part II: Biofilm Reactors
      • 4.15.4 Part III. Undesirable Biofilms: Examples of Biofilm-Related Problems in the Water and Wastewater Industries
      • References
    • 4.16. Membrane Biological Reactors
      • 4.16.1 Introduction
      • 4.16.2 Aeration and Extractive Membrane Biological Reactors
      • 4.16.3 History and Fundamentals of Biosolid Separation MBR
      • 4.16.4 Worldwide Research and Development Challenges
      • 4.16.5 Worldwide Commercial Application
      • 4.16.6 Future Vision
      • 4.16.7 Conclusion
      • References
    • 4.17. Anaerobic Processes
      • 4.17.1 Anaerobic Process Fundamentals
      • 4.17.2 Selection and Design of Anaerobic Technology
      • 4.17.3 Interpretation and Operation of Anaerobic Systems
      • 4.17.4 Future Applications of Anaerobic Digestion
      • References
    • 4.18. Microbial Fuel Cells
      • 4.18.1 Resource Recovery from Wastewater
      • 4.18.2 Microbial Fuel Cells
      • 4.18.3 Thermodynamics of Microbial Fuel Cells
      • 4.18.4 Factors Determining the Decrease of Cell Voltage
      • 4.18.5 Materials and Architectures
      • 4.18.6 Electrochemically Active Microorganisms and Extracellular Electron Transfer
      • 4.18.7 Oxidative Processes
      • 4.18.8 Reductive Processes
      • 4.18.9 Challenges toward Improving MFC Efficiency
      • 4.18.10 Opportunities for Bioelectrochemical Systems
      • 4.18.11 Outlook
      • References
      • Relevant Website
    • 4.19. Water in the Pulp and Paper Industry
      • 4.19.1 Overview of Pulp and Papermaking
      • 4.19.2 Water in the Pulp and Paper industry
      • 4.19.3 Water Use
      • 4.19.4 Water Treatment
      • 4.19.5 Potentials and Limits of Water Saving
      • 4.19.6 Improving Water Efficiency in Paper Manufacturing Industries – 30 Years of Success
      • References
    • 4.20. Water in the Textile Industry
      • 4.20.1 Textile Industry
      • 4.20.2 Characteristic of Textile Water and Wastewater
      • 4.20.3 Treatment and Reuse of Textile Wastewater
      • 4.20.4 Conclusions
      • References
    • 4.21. Water Availability and Its Use in Agriculture
      • 4.21.1 Water Availability and Its Use in Agriculture
      • 4.21.2 Productive Use of Agricultural Water
      • 4.21.3 Environmental and Health Implications of Agricultural Water Use
      • 4.21.4 Water Governance
      • References
      • Relevant Websites
  • Subject Index
  • Authors

Details

No. of pages:
2102
Language:
English
Copyright:
© Elsevier Science 2011
Published:
Imprint:
Elsevier Science
Hardcover ISBN:
9780444531933
eBook ISBN:
9780444531995

About the Editor-in-Chief

Peter Wilderer

Affiliations and Expertise

Technische Universität München, Am Coulombwall, D-85748 Garching, Germany