COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Transduction Mechanisms in Cellular Signaling - 1st Edition - ISBN: 9780123838629, 9780123838636

Transduction Mechanisms in Cellular Signaling

1st Edition

Cell Signaling Collection

Editors: Edward A. Dennis Ralph A. Bradshaw
eBook ISBN: 9780123838636
Paperback ISBN: 9780123838629
Imprint: Academic Press
Published Date: 4th April 2011
Page Count: 610
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Cytosol, the liquid found inside cells, is the site for multiple cell processes, including signaling from the cell membrane to sites within the cell. Cytosolic signaling mechanisms are researched and studied in graduate programs in cell biology, molecular biology, biochemistry, pharmacology, molecular and cellular physiology, pharmacy, and biomedical sciences.

Key Features

  • Articles written and edited by experts in the field
  • Thematic volume covering material needed for young professionals joining the field of research and graduate students taking survey courses
  • Up-to-date research on signaling systems and mutations in transcription factors that provide new targets for treating disease


Researchers and graduate students in Cell Biology, Molecular Biology, Biochemistry, Pharmacology, Molecular and Cellular Physiology, Pharmacy, and Biomedical Sciences.

Table of Contents

Volume two includes 183 chapters divided in 8 sections, including:

Section A: Protein Phosphorylation

56 Eukaryotic Kinomes: Genomics and Evolution of Protein Kinases

57 Modular Protein Interaction Domains in Cellular Communication

58 Structures of Serine/Threonine and Tyrosine Kinases

59 Protein Tyrosine Kinase Receptor Signaling Overview

60 Signaling by the Platelet-Derived Growth Factor Receptor Family

61 The Epidermal Growth Factor Receptor Family

62 Mechanisms and Functions of Eph Receptor Signaling

63 Cytokine Receptor Signaling

64 The Negative Regulation of JAK/STAT signaling

65 Protein Kinase Inhibitors

66 Integrin Signaling: Cell Migration, Proliferation, and Survival

67 Downstream Signaling Pathways: Modular Interactions

68 Non-Receptor Tyrosine Kinases in T Cell Antigen Receptor Function

69 Receptor Tyrosine Kinase Signaling and Ubiquitination

70 TGFb Signal Transduction

71 Mitogen-Activated Protein Kinases

72 Recognition of Phospho-Serine/Threonine Phosphorylated Proteins

73 AMP-Activated Protein Kinase

74 Principles of Kinase Regulation

75 Calcium/Calmodulin-Dependent Protein Kinase II

76 Glycogen Synthase Kinase 3

77 The PIKK Family of Protein Kinases

78 Histidine Kinases in Two-Component Signaling Pathways

79 The EF2K/MHCK/TRPM7 Family of Atypical Protein Kinases

80 The Leucine-Rich Repeat Receptor Protein Kinases of Arabidopsis thaliana

81 Engineering Protein Kinases with Specificity for Unnatural Nucleotides and Inhibitors

82 Clinical Applications of Kinase Inhibitors in Solid Tumors

83 Ubiquitin-Mediated Regulation of Protein Kinases in NFκB Signaling

84 Global Analysis of Phosphoregulatory Networks

Section B: Protein Dephosphorylation

85 Phosphatase Families Dephosphorylating Serine and Threonine Residues in Proteins

86 The Structure and Topology of Protein Serine/Threonine Phosphatases

87 Naturally Occurring Inhibitors of Protein Serine/Threonine Phosphatases

88 Protein Phosphatase 1 Binding Proteins

89 Protein Serine/Threonine Phosphatase Inhibitors and Human Disease

90 Calcineurin

91 Protein Serine/Threonine-Phosphatase 2C (PP2C)

92 Approaches to the Identification of Protein Tyrosine Phosphatase Substrates

93 Inhibitors of Protein Tyrosine Phosphatases

94 Regulating Receptor PTP Activity

95 CD45


No. of pages:
© Academic Press 2011
4th April 2011
Academic Press
eBook ISBN:
Paperback ISBN:

About the Editors

Edward A. Dennis

Edward A. Dennis

Edward A. Dennis is Distinguished Professor and former Chair of the Department of Chemistry and Biochemistry and Professor in the Department of Pharmacology in the School of Medicine at the University of California, San Diego. He is also Editor-in-Chief of the Journal of Lipid Research.

Affiliations and Expertise

Department of Chemistry and Biochemistry and Department of Pharmacology in the School of Medicine at the University of California, San Diego

Ralph A. Bradshaw

Ralph A. Bradshaw

Ralph A. Bradshaw is Professor Emeritus in the Department of Physiology and biophysics at the University of California, Irvine. Prior to that he was on the faculty of the Department of Biological Chemistry, Washington University School of Medicine in St. Louis, MO and was Professor and Chair of the Department of Biological Chemistry at the University of California, Irvine. From 2006 to 2015, he was a member of the Mass Spectrometry Facility and Professor of Pharmaceutical Chemistry at the University of California, San Francisco. He holds degrees from Colby College and Duke University and was a post-doctoral fellow at Indiana University and the University of Washington. He has served as president for FASEB, was the founding president of the Protein Society and was the treasurer of the American Society for Biochemistry and Molecular Biology. His research has focused on protein chemistry and proteomics, with emphasis on the structure and function of growth factors and their receptors, particularly nerve growth factor and fibroblast growth factor, and the involvement of receptor tyrosine kinases in cell signalling. He has also studied in the role of proteolytic processing and N-terminal modification in protein stability and turnover.

Affiliations and Expertise

Department of Chemistry and Pharmaceutical Chemistry; and Mass Spectrometry Facility, University of California, San Francisco, Department of Physiology and Biophysics, College of Medicine, University of California, Irvine, Irvine, CA

Ratings and Reviews