Traffic Flow Theory - 1st Edition - ISBN: 9780128041345, 9780128041475

Traffic Flow Theory

1st Edition

Characteristics, Experimental Methods, and Numerical Techniques

Authors: Daiheng Ni
eBook ISBN: 9780128041475
Paperback ISBN: 9780128041345
Imprint: Butterworth-Heinemann
Published Date: 22nd October 2015
Page Count: 412
Tax/VAT will be calculated at check-out
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
160.86
112.60
112.60
112.60
112.60
112.60
128.69
128.69
108.00
75.60
75.60
75.60
75.60
75.60
86.40
86.40
95.00
66.50
66.50
66.50
66.50
66.50
76.00
76.00
150.00
105.00
105.00
105.00
105.00
105.00
120.00
120.00
Unavailable
File Compatibility per Device

PDF, EPUB, VSB (Vital Source):
PC, Apple Mac, iPhone, iPad, Android mobile devices.

Mobi:
Amazon Kindle eReader.

Institutional Access


Description

Creating Traffic Models is a challenging task because some of their interactions and system components are difficult to adequately express in a mathematical form. Traffic Flow Theory: Characteristics, Experimental Methods, and Numerical Techniques provide traffic engineers with the necessary methods and techniques for mathematically representing traffic flow. The book begins with a rigorous but easy to understand exposition of traffic flow characteristics including Intelligent Transportation Systems (ITS) and traffic sensing technologies.

Key Features

  • Includes worked out examples and cases to illustrate concepts, models, and theories
  • Provides modeling and analytical procedures for supporting different aspects of traffic analyses for supporting different flow models
  • Carefully explains the dynamics of traffic flow over time and space

Readership

Transportation Engineers, Traffic Engineers, Traffic System Designers, Highway Engineers and undergraduate and graduate students

Table of Contents

  • Dedication
  • Preface
  • Part I: Traffic Flow Characteristics
    • Chapter 1: Traffic Sensing Technologies
      • Abstract
      • 1.1 Traffic Sensors
      • 1.2 Traffic Sensor Classification
      • 1.3 Data Sources
      • Problems
    • Chapter 2: Traffic Flow Characteristics I
      • Abstract
      • 2.1 Mobile Sensor Data
      • 2.2 Point Sensor Data
      • 2.3 Space Sensor Data
      • 2.4 Time-Space Diagram and Characteristics
      • 2.5 Relationships among Characteristics
      • 2.6 Desired Traffic Flow Characteristics
      • Problems
    • Chapter 3: Traffic Flow Characteristics II
      • Abstract
      • 3.1 Generalized Definition
      • 3.2 Three-Dimensional Representation of Traffic Flow
      • Problems
    • Chapter 4: Equilibrium Traffic Flow Models
      • Abstract
      • 4.1 Single-Regime Models
      • 4.2 Multiregime Models
      • 4.3 The State-of-the-Art Models
      • 4.4 Can We Go any Further?
      • Problems
  • Part II: Macroscopic Modeling
    • Chapter 5: Conservation Law
      • Abstract
      • 5.1 The Continuity Equation
      • 5.2 First-Order Dynamic Model
      • Problems
    • Chapter 6: Waves
      • Abstract
      • 6.1 Wave Phenomena
      • 6.2 Mathematical Representation
      • 6.3 Traveling Waves
      • 6.4 Traveling Wave Solutions
      • 6.5 Wave Front and Pulse
      • 6.6 General Solution to Wave Equations
      • 6.7 Characteristics
      • 6.8 Solution to the Wave Equation
      • 6.9 Method of Characteristics
      • 6.10 Some Properties
      • Problems
    • Chapter 7: Shock and Rarefaction Waves
      • Abstract
      • 7.1 Gradient Catastrophes
      • 7.2 Shock Waves
      • 7.3 Rarefaction Waves
      • 7.4 Entropy Condition
      • 7.5 Summary of Wave Terminology
      • Problems
    • Chapter 8: LWR Model
      • Abstract
      • 8.1 The LWR Model
      • 8.2 Example: LWR with Greenshields Model
      • 8.3 Shock Wave Solution to the LWR Model
      • 8.4 Riemann Problem
      • 8.5 LWR Model with a General q-k Relationship
      • 8.6 Shock Path and Queue Tail
      • 8.7 Properties of the Flow-Density Relationship
      • 8.8 Example LWR Model Problems
      • Problems
    • Chapter 9: Numerical Solutions
      • Abstract
      • 9.1 Discretization Scheme
      • 9.2 FREFLO
      • 9.3 FREQ
      • 9.4 KRONOS
      • 9.5 Cell Transmission Model
      • Problems
    • Chapter 10: Simplified Theory of Kinematic Waves
      • Abstract
      • 10.1 Triangular Flow-Density Relationship
      • 10.2 Forward Wave Propagation
      • 10.3 Backward Wave Propagation
      • 10.4 Local Capacity
      • 10.5 Minimum Principle
      • 10.6 Single Bottleneck
      • 10.7 Computational Algorithm
      • 10.8 Further Note on the Theory of Kinematic Waves
      • Problems
    • Chapter 11: High-Order Models
      • Abstract
      • 11.1 High-Order Models
      • 11.2 Relating Continuum Flow Models
      • 11.3 Relative Merits of Continuum Models
      • 11.4 Taxonomy of Macroscopic Models
      • Problems
  • Part III: Microscopic Modeling
    • Chapter 12: Microscopic Modeling
      • Abstract
      • 12.1 Modeling Scope and Time Frame
      • 12.2 Notation
      • 12.3 Benchmarking Scenarios
      • Problems
    • Chapter 13: Pipes and Forbes Models
      • Abstract
      • 13.1 Pipes Model
      • 13.2 Forbes Model
      • 13.3 Benchmarking
      • Problems
    • Chapter 14: General Motors Models
      • Abstract
      • 14.1 Development of GM Models
      • 14.2 Microscopic Benchmarking
      • 14.3 Microscopic-Macroscopic Bridge
      • 14.4 Macroscopic Benchmarking
      • 14.5 Limitations of GM Models
      • Problems
    • Chapter 15: Gipps Model
      • Abstract
      • 15.1 Model Formulation
      • 15.2 Properties of the Gipps Model
      • 15.3 Benchmarking
      • Problems
    • Chapter 16: More Single-Regime Models
      • Abstract
      • 16.1 Newell Nonlinear Model
      • 16.2 Newell Simplified Model
      • 16.3 Intelligent Driver Model
      • 16.4 Van Aerde Model
      • Problems
    • Chapter 17: More Intelligent Models
      • Abstract
      • 17.1 Psychophysical Model
      • 17.2 CARSIM Model
      • 17.3 Rule-based Model
      • 17.4 Neural Network Model
      • 17.5 Summary of Car-Following Models
      • Problems
  • Part IV: Picoscopic Modeling
    • Chapter 18: Picoscopic Modeling
      • Abstract
      • 18.1 Driver, Vehicle, and Environment
      • 18.2 Applications of Picoscopic Modeling
      • Problems
    • Chapter 19: Engine Modeling
      • Abstract
      • 19.1 Introduction
      • 19.2 Review of Existing Engine Models
      • 19.3 Simple Mathematical Engine Models
      • 19.4 Validation and Comparison of the Engine Models
      • 19.5 Conclusion
      • 19.A A Cross-Comparison of Engine Models
    • Chapter 20: Vehicle Modeling
      • Abstract
      • 20.1 Overview of the DIV Model
      • 20.2 Modeling Longitudinal Movement
      • 20.3 Modeling Lateral Movement
      • 20.4 Model Calibration and Validation
      • Problems
    • Chapter 21: The Field Theory
      • Abstract
      • 21.1 Motivation
      • 21.2 Physical Basis of Traffic Flow
      • 21.3 The Field Theory
      • 21.4 Simplification of the Field Theory
      • 21.5 Discussion of the Field Theory
      • 21.6 Summary
      • Problems
    • Chapter 22: Longitudinal Control Model
      • Abstract
      • 22.1 Introduction
      • 22.2 The LCM
      • 22.3 Model Properties
      • 22.4 Empirical Results
      • 22.5 Applications
      • 22.6 Related Work
      • 22.7 Summary
      • Problems
  • Part V: The Unified Perspective
    • Chapter 23: The Unified Diagram
      • Abstract
      • 23.1 Motivation
      • 23.2 A Broader Perspective
      • 23.3 The Unified Diagram
      • 23.4 Summary
      • Problems
    • Chapter 24: Multiscale Traffic Flow Modeling
      • Abstract
      • 24.1 Introduction
      • 24.2 The Spectrum of Modeling Scales
      • 24.3 The Multiscale Approach
      • 24.4 Summary
      • Problems
  • Bibliography
  • Index

Details

No. of pages:
412
Language:
English
Copyright:
© Butterworth-Heinemann 2016
Published:
Imprint:
Butterworth-Heinemann
eBook ISBN:
9780128041475
Paperback ISBN:
9780128041345

About the Author

Daiheng Ni

University of Massachusetts – Amherst, Associate Professor, Department of Civil and Environmental Engineering

Affiliations and Expertise

University of Massachusetts – Amherst