Titanium Alloys
1st Edition
Modelling of Microstructure, Properties and Applications
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Introduction to titanium alloys. Part 1 Experimental techniques: Microscopy; Synchrotron radiation X-ray diffraction; Differential scanning calorimetry and property measurements. Part 2 Physical models: Thermodynamic modelling; The Johnson-Mehl-Avrami method: Isothermal transformation kinetics; The Johnson-Mehl-Avrami method adapted to continuous cooling; Finite element method: Morphology of ß to a phase transformation; Phase-field method: Lamellar structure formation in -TiAl; Cellular automata method for microstructural evolution modelling; Crystallographic and fracture behaviour of titanium aluminide; Atomistic simulations of interfaces and dislocations relevant to TiAl. Part 3 Neural network models: Neural network method; Neural network models and applications in phase transformation studies; Neural network models and applications in property studies. Part 4 Surface engineering products: Surface gas nitriding: Phase composition and microstructure; Surface gas nitriding: Mechanical properties, morphology, corrosion; Nitriding: Modelling of hardness profiles and the kinetics; Aluminising: Fabrication of Al and Ti-Al coatings by mechanical alloying.
Description
Given their growing importance in the aerospace, automotive, sports and medical sectors, modelling the microstructure and properties of titanium and its alloys is a vital part of research into the development of new applications. This is the first time a book has been dedicated to modelling techniques for titanium.
Part one discusses experimental techniques such as microscopy, synchrotron radiation X-ray diffraction and differential scanning calorimetry. Part two reviews physical modelling methods including thermodynamic modelling, the Johnson-Mehl-Avrami method, finite element modelling, the phase-field method, the cellular automata method, crystallographic and fracture behaviour of titanium aluminide and atomistic simulations of interfaces and dislocations relevant to TiAl. Part three covers neural network models and Part four examines surface engineering products. These include surface nitriding: phase composition, microstructure, mechanical properties, morphology and corrosion; nitriding: modelling of hardness profiles and kinetics; and aluminising: fabrication of Ti coatings by mechanical alloying.
With its distinguished authors, Titanium alloys: Modelling of microstructure, properties and applications is a standard reference for industry and researchers concerned with titanium modelling, as well as users of titanium, titanium alloys and titanium aluminide in the aerospace, automotive, sports and medical implant sectors.
Key Features
- Comprehensively assesses modelling techniques for titanium, including experimental techniques such as microscopy and differential scanning calorimetry
- Reviews physical modelling methods including thermodynamic modelling and finite element modelling
- Examines surface engineering products with specific chapters focused on surface nitriding and aluminising
Readership
Industry and researchers concerned with titanium modelling; Users of titanium, titanium alloys and titanium aluminide in the aerospace, automotive, sports and medical implant sectors
Details
- No. of pages:
- 588
- Language:
- English
- Copyright:
- © Woodhead Publishing 2009
- Published:
- 29th April 2009
- Imprint:
- Woodhead Publishing
- Hardcover ISBN:
- 9781845693756
- eBook ISBN:
- 9781845695866
Ratings and Reviews
About the Authors

W Sha
Professor Wei Sha is Professor of Materials Science at The Queen’s University of Belfast, UK
Affiliations and Expertise
Materials science; Metallurgy: Queen’s University Belfast
S Malinov
Dr Savko Malinov is a Lecturer in Mechanical and Aerospace Engineering, The Queen’s University of Belfast, UK.
Affiliations and Expertise
Queen’s University of Belfast, UK
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.