
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials
Description
Key Features
- Shows readers how to improve the efficiency of heat transfer in graphene and other nanomaterials with analysis of different methodologies
- Includes fundamental information on the thermoelectric properties of graphene and other atomic monolayers, providing a valuable reference source for materials scientists and engineers
- Covers the important models of thermoelectric phenomena and thermal transport in the 2D nanomaterials and nanodevices, allowing readers to gain a greater understanding of the factors behind the efficiency of heat transport in a variety of nanomaterials
Readership
Materials scientists, solid state physicists and engineers working in the areas of carbon nanomaterials and seeking to increase their efficiency with a view to industrial application
Table of Contents
I. LOW-ENERGY ELECTRON EXCITATIONS IN GRAPHENE
1.1. Dirac equation for chiral fermions
1.2.1. Tight binding scheme
1.2.2. Density of electron states in graphene
1.3. Berry phase and topological singularity in graphene
1.4. Klein paradox and chiral tunnelling.II. THERMAL TRANSPORT OF CHARGE CARRIERS
2.1. Components of the heat transport
2.2. Modelling of heat transport of charge carriers in graphene and carbon nanotube devices
2.3. Quantum confined Stark effect
2.4. PT-invariance the Dirac Hamiltonian
2.5. Heavy chiral fermions at zigzag edges of graphene stripeIII. PHONON TRANSPORT AND HEAT CONDUCTIVITY
3.1. Phonon modes in the two-dimensional graphene
3.2. Phonon spectra in graphene, and graphene nanoribbons
3.3. The phonon transport in two-dimensional crystals
3.4. Momentum diagram of phonon transport in graphene
3.5. Thermal conductivity due to phonons in graphene nanoribbonsIV. EXPERIMENTAL STUDY OF THE THERMAL TRANSPORT
4.1. Raman scattering
4.2. Role of the degrees of freedom
4.3. Molecular vibrations and infrared radiation
4.4. Various processes of light scattering
4.5. Stokes and anti-Stokes scattering
4.6. Raman scattering versus fluorescence
4.7. Selection rules for Raman scattering
4.8. Raman amplification and Stimulated Raman scattering
4.9. A requirement of the coherence
4.10. Practical applications
4.11. Higher-order Raman spectra
4.12. Raman spectroscopy of graphene
4.13. Kohn anomalies, double resonance, and D and G peaks
4.14. Deriving the electron–phonon coupling from Raman line width
4.15. Raman spectroscopy of graphene and graphene layers
4.16. Failure the adiabatic Born–Oppenheimer approximation and the Raman spectrum of doped graphene
4.17. Influence of the atomic and structural disorders
4.18. Graphene ribbons and edgesV. ROLE OF STRUCTURAL DEFECTS AND IMPERFECTIONS
5.1. Pseudospin conservation during the scattering of chiral fermions
5.2. Phonon drag effect
5.3. Screening by interacting electrons
5.4. Plasma oscillations
5.5. Plasma excitations in graphene
5.6. Electron-impurity scattering time in graphene
5.7. Scattering of phonons in a few-layer grapheneVI. MANY BODY EFFECTS IN GRAPHENE
6.1. Electron-electron interaction
6.2. Electron self-energy effects
6.3. Quasi-particle excitations
6.4. Numeric results
6.5. Excitons in graphene and in the other atomic monolayers
6.6. Wannier-Mott excitons
6.7. Excitonic states
6.8. Experimental observation of excitons in graphene and in the other atomic monolayers
6.9. Electron scattering on indirect excitons
6.10. Tomonaga–Luttinger liquid
6.11. Probing of intrinsic state of one-dimensional quantum well with a photon-assisted tunneling
6.12. The TLL tunneling density of states of a long quantum well
6.13. Identifying the charge and the spin boson energy levels
6.14. Useful relationshipsIX. THERMOELECTRIC DEVICES BASED ON GRAPHENE AND OTHER ATOMIC MONOLAYERS
7.1. Thermoelectric phenomena on nanoscale
7.2. Performance and efficiency of the thermoelectric device
7.3. Quantum theory of electronic thermal transport
7.4. Electron transport and elastic collisions
7.5. Reversible Peltier effect in carbon nano-junctions
7.6. Thermoelectric figure of merit and Fourier law
7.6.1. The linear heat flow
7.6.2. The cooling power.
7.6.3. Seebeck coefficient.
7.6.4. Electron thermal conductivity.
7.6.5. Figure of merit.
7.7. Phonon Transport and Thermal Conductivity
7.7.1. Estimation of phonon thermal conductivity.
7.8. Recent experiments for measuring the thermal conductivity of graphene
7.9. Microscopic model of the thermoelectric effect
7.9.1. The electron Green function of infinite space.
7.9.2. The d.c. electric current.
7.9.3. The d.c. heat current.
7.9.4. Fourier Law.
7.9.5. The cooling efficiency of a gated stack of nanotubes.
7.9.6. Cooling Power.
7.10. Converting the heat into electricity by a graphene stripe with heavy chiral fermions
7.11. Blocking the phonon flow by multilayered electrodes
7.12. Molecular dynamics simulations
7.13. Non-equilibrium thermal injection
7.13.1. Transparency of the H/RR interface
7.16. Perspectives of Thermoelectric Research for GrapheneXI. OTHER ATOMIC MONOLAYERS
8.1. Heat transport in atomic monolayers
8.2. A few-layered materials
8.2.1. Hexagonal boron nitride (h-BN)
8.2.2. Transition metal dichalcogenides
8.2.3. Chalcogenides of group III, group IV and group V
8.2.4. Synthesis
8.2.5. Bottom-up fabrication
8.2.6. Electronic bandstructure of atomic monolayers
8.3. Electric transport in nanodevices
8.4. Electronic transport versus scattering mechanisms
8.5. TMDC thermoelectric devices
8.6. Perspectives of the TMDC transducers
8.7. Vibrational and optical properties of TMDCs
8.7.1. Transparent and flexible transducers
8.7.2. Photodetection and photovoltaics
8.7.3. Emission of light
8.8. The future thermolectric applications of 2D materials
Product details
- No. of pages: 546
- Language: English
- Copyright: © Elsevier 2017
- Published: July 15, 2017
- Imprint: Elsevier
- Hardcover ISBN: 9780323443975
- eBook ISBN: 9780323444903
About the Author
Serhii Shafraniuk
Affiliations and Expertise
Ratings and Reviews
There are currently no reviews for "Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials"