COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Theory of Heavy Ion Collision Physics in Hadron Therapy - 1st Edition - ISBN: 9780123964557, 9780123964793

Theory of Heavy Ion Collision Physics in Hadron Therapy, Volume 65

1st Edition

Serial Volume Editor: Dzevad Belkic
Hardcover ISBN: 9780123964557
eBook ISBN: 9780123964793
Imprint: Academic Press
Published Date: 31st December 2012
Page Count: 480
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Editorial Board



Chapter One. Stochastics of Energy Loss and Biological Effects of Heavy Ions in Radiation Therapy

1. Introduction

2. Energy loss at macroscopic level

3. Bragg functions

4. Energy loss and deposition at microscopic levels

5. Stochastics of energy loss in cells

6. Bio-effects

7. Conclusions


Chapter Two. On the Accuracy of Stopping Power Codes and Ion Ranges Used for Hadron Therapy

1. Introduction

2. Tables and programs

3. Liquid water as a target

4. Other target substances and statistical comparisons

5. Conclusions

6. List of acronyms


Chapter Three. On the Determination of the Mean Excitation Energy of Water

1. Introduction

2. Some basic theory

3. Theoretical determination of I0

4. Experimental determination of I0

5. Conclusion


Chapter Four. Molecular Scale Simulation of Ionizing Particles Tracks for Radiobiology and Hadrontherapy Studies

1. Introduction

2. Detailed step by step track structure codes

3. Radiation microdosimetry analysis

4. DNA damage estimation

5. Conclusion


Chapter Five. Verifying Radiation Treatment in Proton Therapy via PET Imaging of the Induced Positron-Emitters

1. Introduction

2. Positron emitter production

3. Nuclear reaction cross sections

4. Monte Carlo simulations

5. Results

6. Discussion and conclusions


Chapter six. Inelastic Collisions of Energetic Protons in Biological Media

1. Introduction

2. Dielectric formalism for inelastic scattering

3. Charge-exchange processes

4. Inelastic energy-loss magnitudes

5. Simulation of the depth–dose distributions

6. Conclusions


Chapter Seven. The Dielectric Formalism for Inelastic Processes in High-Energy Ion–Matter Collisions

1. Introduction

2. The shellwise local plasma approximation

3. Energy loss in particle penetration of matter

4. Energy loss straggling

5. Ionization probabilities

6. Conclusions and Future Prospects


Chapter Eight. Single Ionization of Liquid Water by Protons, Alpha Particles, and Carbon Nuclei: Comparative Analysis of the Continuum Distorted Wave Methodologies and Empirical Models

1. Introduction

2. Theoretical approaches

3. Experimental works

4. Semiempirical methods

5. Comparison between experimental, theoretical, and semiempirical results

6. Conclusions and perspectives


Chapter Nine. Computation of Distorted Wave Cross Sections for High-Energy Inelastic Collisions of Heavy Ions with Water Molecules

1. Introduction

2. The distorted wave model for inelastic collisions

3. Electronic stopping power

4. The case of water molecules

5. Multiple ionization of water molecules

6. Concluding remarks


Chapter Ten. The First Born Approximation for Ionization and Charge Transfer in Energetic Collisions of Multiply Charged Ions with Water

1. Introduction

2. Ion-induced ionization and charge transfer cross sections in water: a review of the existing data

3. Molecular description of the water target

4. Born approximations

5. Conclusions


Chapter Eleven. Ion Collisions with Water Molecules: A Time-Dependent Density Functional Theory Approach

1. Introduction

2. Theory

3. Results

4. Summary and Outlook


Chapter Twelve. Four-Body Theories for Transfer Ionization in Fast Ion-Atom Collisions

1. Introduction

2. The independent particle/event models

3. The four-body continuum distorted wave method

4. The four-body Born distorted wave method

5. Conclusions


Chapter Thirteen. Distorted Wave Theories for One- and Two-Electron Capture in Fast Atomic Collisions

1. Introduction

2. Basic kinematics and dynamics

3. The first Born method with correct boundary conditions

4. The continuum-intermediate state method with the correct boundary conditions

5. angular and energy dependencies of charge-transfer cross sections

6. The Dodd–Greider integral equation in the theory of two-electron processes

7. Conclusion


Chapter Fourteen. Mechanistic Repair-Based Padé Linear-Quadratic Model for Cell Response to Radiation Damage

1. Introduction

2. Dose–effect curve (response curve or cell surviving curve)

3. The linear-quadratic model

4. The Padé linear-quadratic model

5. Results: comparison of radiobiological models with measurements

6. Discussion and conclusion




Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

Key Features

  • Presents surveys of current topics in this rapidly developing field
  • Features detailed reviews written by leading international researchers
  • Focuses on the theory of heavy ion physics in medicine


Quantum chemists, physical chemists, physicists


No. of pages:
© Academic Press 2013
31st December 2012
Academic Press
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Serial Volume Editor

Dzevad Belkic