The Spectral Analysis of Time Series - 1st Edition - ISBN: 9780124192515, 9780080541563

The Spectral Analysis of Time Series

1st Edition

Authors: Lambert Koopmans
eBook ISBN: 9780080541563
Imprint: Academic Press
Published Date: 8th May 1995
Page Count: 366
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
50.95
35.66
35.66
35.66
35.66
35.66
40.76
40.76
40.95
28.66
28.66
28.66
28.66
28.66
32.76
32.76
61.95
43.37
43.37
43.37
43.37
43.37
49.56
49.56
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Preliminaries: Time Series and Spectra. Summary of Vector Space Geometry. Some Probability Notations and Properties. Models for Spectral Analysis-The Univariate Case: The Wiener Theory of Spectral Analysis. Stationary and Weakly Stationary Stochastic Processes. The Spectral Representation for Weakly Stationary Stochastic Processes-A Special Case. The General Spectral Representation for Weakly Stationary Processes. The Discrete and Continuous Components of the Process. Physical Realizations of the Different Kinds of Spectra. The Real Spectral Representation. Ergodicity and the Connection Between the Wiener and Stationary Process Theories. Statistical Estimation of the Autocovariance and the Mean Ergodic Theorem. Sampling, Aliasing, and Discrete-Time Models: Sampling and the Aliasing Problem. The Spectral Model for Discrete-Time Series. Linear Filters-General Properties with Applications to Continuous-Time Processes: Linear Filters. Combining Linear Filters. Inverting Linear Filters. Nonstationary Processes Generated by Time Varying Linear Filters. Multivariate Spectral Models and Their Applications: The Spectrum of a Multivariate Time Series-Wiener Theory. Multivariate Weakly Stationary Stochastic Processes. Linear Filters for Multivariate Time Series. The Bivariate Spectral Parameters, Their Interpretations and Uses. The Multivariate Spectral Parameters, Their Interpretations and Uses. Digital Filters: General Properties of Digital Filters. The Effect of Finite Data Length. Digital Filters with Finitely Many Nonzero Weights. Digital Filters Obtained by Combining Simple Filters. Filters with Gapped Weights and Results Concerning the Filtering of Series with Polynomial Trends. Finite Parameter Models, Linear Prediction, and Real-Time Filtering: Moving Averages. Autoregressive Processes. The Linear Prediction Problem. Mixed Autoregressive-Moving Average Processes and Recursive Prediction. Linear Filtering in Real Time The Distribution Theory of Spectral Estimates with Applications to Statistical Inference: Distribution of the Finite Fourier Transform and the Periodogram. Distribution Theory for Univariate Spectral Estimators. Distribution Theory for Multivariate Spectral Estimators with Applications to Statistical Inference. Sampling Properties of Spectral Estimates, Experimental Design, and Spectral Computations: Properties of Spectral Estimators and the Selection of Spectral Windows. Experimental Design. Methods for ComputingSpectral Estimators. Data Processing Problems and Techniques. References. Index.


Description

To tailor time series models to a particular physical problem and to follow the working of various techniques for processing and analyzing data, one must understand the basic theory of spectral (frequency domain) analysis of time series. This classic book provides an introduction to the techniques and theories of spectral analysis of time series. In a discursive style, and with minimal dependence on mathematics, the book presents the geometric structure of spectral analysis. This approach makes possible useful, intuitive interpretations of important time series parameters and provides a unified framework for an otherwise scattered collection of seemingly isolated results. The books strength lies in its applicability to the needs of readers from many disciplines with varying backgrounds in mathematics. It provides a solid foundation in spectral analysis for fields that include statistics, signal process engineering, economics, geophysics, physics, and geology. Appendices provide details and proofs for those who are advanced in math. Theories are followed by examples and applications over a wide range of topics such as meteorology, seismology, and telecommunications. Topics covered include Hilbert spaces; univariate models for spectral analysis; multivariate spectral models; sampling, aliasing, and discrete-time models; real-time filtering; digital filters; linear filters; distribution theory; sampling properties ofspectral estimates; and linear prediction.

Key Features

  • Hilbert spaces
  • univariate models for spectral analysis
  • multivariate spectral models
  • sampling, aliasing, and discrete-time models
  • real-time filtering
  • digital filters
  • linear filters
  • distribution theory
  • sampling properties of spectral estimates
  • linear prediction

Readership

Graduate-level students in statistics for engineering (signal processing), economics, geophysics, physics, and geology courses who possess some experience with post-calculus probability and statistics, and elementary matrix algebra. The book is also appropriate as an introductory text for graduate-level math and statistics courses (time series analysis). Further, the book is useful to professionals involved in statistical analysis, and/or those who work as consultants.


Details

No. of pages:
366
Language:
English
Copyright:
© Academic Press 1995
Published:
Imprint:
Academic Press
eBook ISBN:
9780080541563

About the Authors

Lambert Koopmans Author

Affiliations and Expertise

University of New Mexico