Description

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment.

Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of:

  • Catalytic pyrolysis of lignocellulosic biomass
  • Hybrid biogasoline by co-processing in FCC units
  • Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process)
  • Steam reforming of bio-oils to hydrogen

With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students.

Key Features

  • Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes
  • Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process
  • Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature

Readership

Chemists and Chemical Engineers, Biochemical Engineers, academics, research students, post graduate and graduate students and industrial researchers in these areas of study. Environmental Engineers, Biochemists, Petroleum Engineers, post graduate and research students in these areas. And government officials and advisors, policy makers

Table of Contents

Preface

Contributors

Chapter 1. A General Introduction to Biomass Utilization Possibilities

1.1 Introduction: Scope of This Introduction

1.2 A Short History: What Is Biomass? What Is Photosynthesis?

1.3 Chemistry of Biomass and Biomass Conversion

1.4 Drawbacks and Limitations of Biofuels 1.0: First-Generation Biofuels

1.5 Biofuels 2.0: Second-Generation Biomass Conversion Technologies

1.6 Beyond Biofuels: A Personal Future Perspective

References

Chapter 2. Biomass Composition and Its Relevance to Biorefining

2.1 Introduction

2.2 Chemistry of Biomass Materials

2.3 Biomass Types

2.4 Biorefining Technologies

2.5 First-Generation Versus Second-Generation Biomass

2.6 Feedstock Logistics

2.7 Lignocellulosic Feedstocks

2.8 Advances in Lignocellulosic Feedstocks

2.9 Summary

References

Chapter 3. Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels

3.1 Introduction

3.2 Vegetable Oils

3.3 Thermal Cracking (Pyrolysis) of Vegetable Oils

3.4 Transesterification of Vegetable Oils

3.5 Hydrotreating/Hydrocracking of Vegetable Oils

3.6 Conclusions and Perspectives

References

Chapter 4. Heterogeneous Catalysis for Biodiesel Production

4.1 Introduction

4.2 Biodiesel Produced Using Organocatalysts

4.3 Solid Inorganic Acid Catalysts

4.4 Basic Solid Catalysts

4.5 Metal Catalysts

4.6 Ion-Exchange Resins

4.7 Ionic Liquids

4.8 Enzymes

4.9 Continuous-Flow Biodiesel Production

4.10 Conclusions

References

Chapter 5. Catalytic Pyrolysis of Lignocellulosic Biomass

5.1 Introduction

5.2 Pyrolysis Chemistry

5.3 Catalysts for Upgrading of Pyrolysis Bio-oil

5.4 Catalytic Pyrolysis over Zeolites and Mesoporous Materials

Details

No. of pages:
608
Language:
English
Copyright:
© 2013
Published:
Imprint:
Elsevier Science
Print ISBN:
9780444563309
Electronic ISBN:
9780444563323

About the authors

Michael Stöcker

Michael Stöcker received his Diploma in Chemistry in 1975 and his Dr. rer. nat. degree in 1979 - both from the University of Münster (Germany). He kept positions as Research Assistant at the Universities of Münster (Germany, 1975-1979) and Bergen (Norway, 1980-1982) before he joined the Center for Industrial Research (SI - now SINTEF) in 1982. In 1988-1989 he had a sabbatical leave at the University of British Columbia in Vancouver (Canada). He is the Emeritus Editor-in-Chief of the scientific journal “Microporous and Mesoporous Materials”, published by Elsevier B.V. Furthermore, Michael Stöcker kept side positions as Adjunct Professor at the University of Bergen (Norway, 1999-2004) and the Norwegian University for Science and Technology in Trondheim (Norway, 2004-2007). Michael Stöcker has 30 years experience within the fields of synthesis, characterization and catalytic testing of different type of materials, covering mainly zeolites, micro- and mesoporous materials and oxide materials related to catalysis, sorption technology, surface modification and design of novel processes. Special interests are within spectrocopy (Solid-state NMR, ESR, XPS), micro- and mesoporous materials, zeolites, catalytic cracking, desulphurization, MTO as well as bio-refinery related catalysis. He is the author or co-author of about 155 scientific journal publications (including 10 review papers and 10 Handbook chapters), and is co-inventor of two patents. Michael Stöcker has co-edited two scientific books. He has presented about 130 lectures on a national and international basis, about 65 of them based on invitations. He has been project manager of a number of larger industrial contract research projects, Norwegian Research Council and EU projects. He served on the Board (Council) of the International Zeolites Association (IZA – 1998-2004), as Chairman of the IZA Catalysis Commission (1998-2004 – member since 1994) and as a member of the IZA Synthesis Commission (1992-2004).

Reviews

"In this reference for academic and industrial researchers, editors Triantafyllidis, Lappas, and Stöcker explore the applications of catalysis to ‘green chemistry’ processes for the production of sustainable biofuels and bio-chemicals."--Reference & Research Book News, October 2013