The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals - 1st Edition - ISBN: 9780444563309, 9780444563323

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals

1st Edition

Editors: Kostas Triantafyllidis Angelos Lappas Michael Stöcker
eBook ISBN: 9780444563323
Hardcover ISBN: 9780444563309
Imprint: Elsevier Science
Published Date: 25th March 2013
Page Count: 608
Tax/VAT will be calculated at check-out
116.00
94.00
15000.00
147.95
Unavailable
File Compatibility per Device

PDF, EPUB, VSB (Vital Source):
PC, Apple Mac, iPhone, iPad, Android mobile devices.

Mobi:
Amazon Kindle eReader.

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals describes the importance of catalysis for the sustainable production of biofuels and biochemicals, focused primarily on the state-of-the-art catalysts and catalytic processes expected to play a decisive role in the "green" production of fuels and chemicals from biomass. In addition, the book includes general elements regarding the entire chain of biomass production, conversion, environment, economy, and life-cycle assessment.

Very few books are available on catalysis in production schemes using biomass or its primary conversion products, such as bio-oil and lignin. This book fills that gap with detailed discussions of:

  • Catalytic pyrolysis of lignocellulosic biomass
  • Hybrid biogasoline by co-processing in FCC units
  • Fischer-Tropsch synthesis to biofuels (biomass-to-liquid process)
  • Steam reforming of bio-oils to hydrogen

With energy prices rapidly rising, environmental concerns growing, and regulatory apparatus evolving, this book is a resource with tutorial, research, and technological value for chemists, chemical engineers, policymakers, and students.

Key Features

  • Includes catalytic reaction mechanism schemes and gives a clear understanding of catalytic processes
  • Includes flow diagrams of bench-, pilot- and industrial-scale catalytic processing units and demonstrates the various process technologies involved, enabling easy selection of the best process
  • Incorporates many tables, enabling easy comparison of data based on a critical review of the available literature

Readership

Chemists and Chemical Engineers, Biochemical Engineers, academics, research students, post graduate and graduate students and industrial researchers in these areas of study. Environmental Engineers, Biochemists, Petroleum Engineers, post graduate and research students in these areas. And government officials and advisors, policy makers

Table of Contents

Preface

Contributors

Chapter 1. A General Introduction to Biomass Utilization Possibilities

1.1 Introduction: Scope of This Introduction

1.2 A Short History: What Is Biomass? What Is Photosynthesis?

1.3 Chemistry of Biomass and Biomass Conversion

1.4 Drawbacks and Limitations of Biofuels 1.0: First-Generation Biofuels

1.5 Biofuels 2.0: Second-Generation Biomass Conversion Technologies

1.6 Beyond Biofuels: A Personal Future Perspective

References

Chapter 2. Biomass Composition and Its Relevance to Biorefining

2.1 Introduction

2.2 Chemistry of Biomass Materials

2.3 Biomass Types

2.4 Biorefining Technologies

2.5 First-Generation Versus Second-Generation Biomass

2.6 Feedstock Logistics

2.7 Lignocellulosic Feedstocks

2.8 Advances in Lignocellulosic Feedstocks

2.9 Summary

References

Chapter 3. Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels

3.1 Introduction

3.2 Vegetable Oils

3.3 Thermal Cracking (Pyrolysis) of Vegetable Oils

3.4 Transesterification of Vegetable Oils

3.5 Hydrotreating/Hydrocracking of Vegetable Oils

3.6 Conclusions and Perspectives

References

Chapter 4. Heterogeneous Catalysis for Biodiesel Production

4.1 Introduction

4.2 Biodiesel Produced Using Organocatalysts

4.3 Solid Inorganic Acid Catalysts

4.4 Basic Solid Catalysts

4.5 Metal Catalysts

4.6 Ion-Exchange Resins

4.7 Ionic Liquids

4.8 Enzymes

4.9 Continuous-Flow Biodiesel Production

4.10 Conclusions

References

Chapter 5. Catalytic Pyrolysis of Lignocellulosic Biomass

5.1 Introduction

5.2 Pyrolysis Chemistry

5.3 Catalysts for Upgrading of Pyrolysis Bio-oil

5.4 Catalytic Pyrolysis over Zeolites and Mesoporous Materials

5.5 Conclusions

References

Chapter 6. Pathways and Mechanisms of Fast Pyrolysis: Impact on Catalyst Research

6.1 Introduction

6.2 Pathways and Mechanisms of Biomass Pyrolysis

6.3 Mechanistic Studies of Catalytic Pyrolysis

6.4 Final Remarks

Glossary

References

Chapter 7. The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals

7.1 Introduction

7.2 Pretreatment with Acid Catalysts

7.3 Pretreatment with Basic Catalysts

7.4 Self-catalyzed Pretreatment

7.5 Combining Chemical Catalysis with Physical Methods

7.6 Oxidation Catalysts

7.7 Solid Acid Catalysts

7.8 Ionic Liquids

7.9 Summary and Outlook

References

Chapter 8. Role of Acid Catalysis in the Conversion of Lignocellulosic Biomass to Fuels and Chemicals

8.1 Introduction

8.2 Overview of Acid Catalysis

8.3 Acid-Catalyzed Cellulose Hydrolysis

8.4 Isomerization of Carbohydrates Using Solid Lewis Acids

8.5 Production of Furanic Species Through Acid-Catalyzed Dehydration of Sugars

8.6 Acid-Catalyzed Upgrading Reactions for Biomass-Derived Platform Chemicals

8.7 Process Intensification: Cascade Reactions and Bifunctional Materials

8.8 Concluding Remarks

References

Chapter 9. Catalytic Depolymerization and Deoxygenation of Lignin

9.1 Introduction

9.2 Cleavage of C–O and C–C Bond Linkages in Lignin

9.3 Depolymerization of Lignin

9.4 Upgrading the Lignin-Derived Small Molecules

9.5 Conclusion and Outlook

References

Chapter 10. Tomorrow’s Biofuels: Hybrid Biogasoline by Co-processing in FCC Units

Abbreviations

10.1 Introduction

10.2 FCC Co-processing

10.3 HDT Co-processing Case Studies

10.4 Conclusions

References

Chapter 11. Catalytic Hydrotreatment of Bio-Oils for High-Quality Fuel Production

11.1 Introduction

11.2 Biomass Liquefaction Processes

11.3 Characteristics of BOs

11.4 Reference Technology: The HT of Fossil Oils

11.5 BO Upgrading

11.6 Summary, Recent Advances, and Outlook

References

Chapter 12. Fischer-Tropsch Synthesis to Biofuels (BtL Process)

12.1 Introduction

12.2 History of FT Synthesis and New Developments in BtL

12.3 Syngas: A Renewable Carbon Source from Biomass

12.4 Thermodynamic and Kinetic Considerations of FT Synthesis

12.5 Different Kinds of Catalysts

12.6 FT Reactors

12.7 Reaction Conditions at the Laboratory and Industrial Scale

12.8 Mechanism of FT Reactions

12.9 Conclusions

References

Chapter 13. Integrating White Biotechnology in Lignocellulosic Biomass Transformations: From Enzyme-Catalysis to Metabolic Engineering

13.1 Motivation for the Implementation of White Biotechnology in Biorefineries

13.2 Biocatalysis for Lignocellulose Processing: Free, Isolated Enzymes

13.3 Fermentation and Metabolic Engineering for the Production of Bio-Based Commodities

13.4 Concluding Remarks

References

Chapter 14. Steam Reforming of Bio-oils to Hydrogen

14.1 Introduction

14.2 Thermodynamic Considerations of Oxygenates Steam Reforming

14.3 Catalyst Development

14.4 Reaction Network and Mechanism

14.5 Reactor Systems

14.6 Environmental Assessment of Bio-oil to Hydrogen Production via Life Cycle Analysis

14.7 Conclusions and Future Aspects

References

Chapter 15. Photocatalytic Production of Renewable Hydrogen

15.1 Introduction

15.2 Fundamental Concepts of Semiconductor Photocatalysis

15.3 Semiconductor Photocatalysts

15.4 Hydrogen Production by Photocatalytic Cleavage of Water

15.5 Production of Hydrogen by Photoreforming Reactions

15.6 Summary and Conclusions

References

Chapter 16. Catalytic Transformation of CO2 to Fuels and Chemicals, with Reference to Biorefineries

16.1 Introduction

16.2 Strategies for Valorization of CO2 in Biorefineries

16.3 Catalytic Conversion of CO2

16.4 Conclusions

Glossary

References

Chapter 17. The Role of Heterogeneous Catalysis in the Biorefinery of the Future

17.1 Introduction

17.2 The Role of Heterogeneous Catalysis in Biorefineries

17.3 Future Prospects and Conclusions

References

Index

Details

No. of pages:
608
Language:
English
Copyright:
© Elsevier Science 2013
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780444563323
Hardcover ISBN:
9780444563309

About the Editor

Kostas Triantafyllidis

Professor Kostas Triantafyllidis worked as post-doctoral researcher at the Department of Chemistry, Michigan State University, USA (2000-2002). He then joined the Chemical Process Engineering Research Institute (CPERI) of the Centre for Research and Technology-Hellas (CERTH) in Thessaloniki, Greece, as Assistant Researcher (2002-2004). In 2004, he joined the Department of Chemistry at the Aristotle University of Thessaloniki as Lecturer, and since 2009 is Assistant Professor at the same University and Collaborating Faculty Member of CPERI/CERTH.

His research interests focus on the synthesis and characterization of nanoporous materials, organic-inorganic hybrid materials and nanocomposites, heterogeneous & environmental catalysis, thermochemical, catalytic and enzymatic conversion of biomass to fuels and chemicals, adsorption/separation processes. He is the author/co-author of 50 scientific journal publications, of more than 100 publications in conference proceedings and the co-inventor of two patents. He has presented more than 40 lectures in national and international scientific conferences and has participated in more than 20 national and European research projects as scientific coordinator or principal researcher

Affiliations and Expertise

Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

Angelos Lappas

Angelos Lappas is Research Director at the Chemical Process Engineering Research Institute (CPERI) of the Centre for Research and Technology-Hellas (CERTH). He joined CPERI in 1993 after receiving his BSc and a PhD degree in Chemical Engineering from the Aristotle University of Thessaloniki. Angelos Lappas is in charge of the Laboratory of Environmental Fuels and Hydrocarbons (50 people) in CPERI. He kept positions as teaching assistant in the Aristotle University of Thessaloniki and the Technological Institute of Thessaloniki.

Angelos Lappas has implemented more than 25 EU and National research projects and more than 50 industrial contracts, as scientific coordinator. His research fields are: catalytic reaction engineering, refining processing, biomass thermo-chemical conversion processes, production of reformulated fuels and biofuels, fuel quality and characterization. He specializes in biomass catalytic pyrolysis, fluid catalytic cracking (FCC), isomerization, hydrocracking (HYD) processes, emission control technologies and in catalyst deactivation, testing and evaluation. Angelos Lappas has authored or co-authored 60 publications in ISI scientific journals, more than 100 papers in various symposia and conferences, a book and three chapters in books. He is also co-inventor in one patent.

Affiliations and Expertise

Chemical Process Engineering Research Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece

Michael Stöcker

Michael Stöcker received his Diploma in Chemistry in 1975 and his Dr. rer. nat. degree in 1979 - both from the University of Münster (Germany). He kept positions as Research Assistant at the Universities of Münster (Germany, 1975-1979) and Bergen (Norway, 1980-1982) before he joined the Center for Industrial Research (SI - now SINTEF) in 1982. In 1988-1989 he had a sabbatical leave at the University of British Columbia in Vancouver (Canada). He is the Emeritus Editor-in-Chief of the scientific journal “Microporous and Mesoporous Materials”, published by Elsevier B.V.

Furthermore, Michael Stöcker kept side positions as Adjunct Professor at the University of Bergen (Norway, 1999-2004) and the Norwegian University for Science and Technology in Trondheim (Norway, 2004-2007).

Michael Stöcker has 30 years experience within the fields of synthesis, characterization and catalytic testing of different type of materials, covering mainly zeolites, micro- and mesoporous materials and oxide materials related to catalysis, sorption technology, surface modification and design of novel processes. Special interests are within spectrocopy (Solid-state NMR, ESR, XPS), micro- and mesoporous materials, zeolites, catalytic cracking, desulphurization, MTO as well as bio-refinery related catalysis.

He is the author or co-author of about 155 scientific journal publications (including 10 review papers and 10 Handbook chapters), and is co-inventor of two patents. Michael Stöcker has co-edited two scientific books. He has presented about 130 lectures on a national and international basis, about 65 of them based on invitations. He has been project manager of a number of larger industrial contract research projects, Norwegian Research Council and EU projects.

He served on the Board (Council) of the International Zeolites Association (IZA – 1998-2004), as Chairman of the IZA Catalysis Commission (1998-2004 – member since 1994) and as a member of the IZA Synthesis Commission (1992-2004). He is a Member of the Editorial Board of the “Journal of Dispersion Science and Technology”.

He received the DGMK 2009 Award of the German Society for Petroleum and Coal Science and Technology.

Affiliations and Expertise

SINTEF Materials and Chemistry, Oslo, Norway

Reviews

"In this reference for academic and industrial researchers, editors Triantafyllidis, Lappas, and Stöcker explore the applications of catalysis to ‘green chemistry’ processes for the production of sustainable biofuels and bio-chemicals."--Reference & Research Book News, October 2013