
The Rewiring Brain
A Computational Approach to Structural Plasticity in the Adult Brain
Description
Key Features
- Reviews the current state of knowledge of structural plasticity in the adult brain
- Gives a comprehensive overview of computational studies on structural plasticity
- Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory
- Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage
Readership
Advanced graduate students and researchers in the fields of computational neuroscience, experimental neuroscience, neurobiology, and computer science
Table of Contents
Section 1. Experimental Background
1. Structural plasticity and cortical connectivity
2. Structural plasticity induced by adult neurogenesis
3. Structural neural plasticity during stroke recovery
4. Is lesion-induced synaptic rewiring driven by activity homeostasis?Section 2. Homeostatic Structural Plasticity
5. Network formation through activity-dependent neurite outgrowth: a review of a simple model of homeostatic structural plasticity
6. Clustered arrangement of inhibitory neurons can lead to oscillatory dynamics in a model of activity-dependent structural plasticity
7. A detailed model of homeostatic structural plasticity based on dendritic spine and axonal bouton dynamics
8. Critical periods emerge from homeostatic structural plasticity in a full-scale model of the developing cortical column
9. Lesion-induced dendritic remodeling as a new mechanism of homeostatic structural plasticity in the adult brainSection 3. Structural Plasticity and Connectivity
10. The role of structural plasticity in producing nonrandom neural connectivity
11. Structural plasticity and the generation of bidirectional connectivity
12. Spike-timing dependent structural plasticity of multi-contact synaptic connections
13. Selection of synaptic connections by wiring plasticity for robust learning by synaptic weight plasticitySection 4. Structural Plasticity and Learning and Memory
14. Within a spine’s reach
15. Impact of structural plasticity on memory capacity
16. Long-term information storage by the interaction of synaptic and structural plasticity
17. Impact of structural plasticity on memory formation and declineSection 5. Neurogenesis-Related Structural Plasticity
18. Adult neurogenesis and synaptic rewiring in the hippocampal dentate gyrus
19. Modifications in network structure and excitability may drive differential activity dependent integration of granule cells into Dentate Gyrus circuits during normal and pathological adult neurogenesis
20. Computational perspectives on adult neurogenesis
21. Restricted Boltzmann Machine models of hippocampal coding and neurogenesisSection 6. Structural Plasticity and Pathology
22. Modeling the impact of lesions in the brain
23. Network models of epilepsy-related pathological structural and functional alterations in the dentate gyrus
24. Computational models of stroke recovery
25. Neural plasticity in human brain connectivity: the effects of deep brain stimulation
Product details
- No. of pages: 592
- Language: English
- Copyright: © Academic Press 2017
- Published: June 21, 2017
- Imprint: Academic Press
- eBook ISBN: 9780128038727
- Hardcover ISBN: 9780128037843
About the Editors
Arjen van Ooyen

Affiliations and Expertise
Markus Butz-Ostendorf

Markus Butz-Ostendorf studied informatics and biology and holds a PhD in neuroanatomy. He did several postdocs at e.g. at the Bernstein Center for Computational Neuroscience Göttingen, the Neuroscience Campus VU Universiteit Amsterdam and the Forschungszentrum Jülich. His research focus is on modeling structural plasticity in the healthy and diseased brain. Together with Arjen van Ooyen, he phrased a computational theory on the driving forces for homeostatic structural plasticity following brain lesions. The underlying algorithms are freely available in the modeling framework for large-scale spiking neuronal networks NEST. He recently edited Frontiers Research Topic "Anatomy and plasticity in large-scale neuronal networks."