The Infinite-Dimensional Topology of Function Spaces, Volume 64

1st Edition

Authors: J. van Mill
Hardcover ISBN: 9780444505576
eBook ISBN: 9780080929774
Imprint: North Holland
Published Date: 24th May 2002
Page Count: 642
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access

Table of Contents

Chapter 1. Basic topology. Chapter 2. Basic combinatorial topology. Chapter 3. Basic dimension theory. Chapter 4. Basic ANR theory. Chapter 5. Basic infinite-dimensional topology. Chapter 6. Function spaces. Appendix A. Preliminaries. Appendix B. Answers to selected exercises. Appendix C. Notes and comments. Bibliography. Special Symbols. Author Index. Subject Index.


In this book we study function spaces of low Borel complexity. Techniques from general topology, infinite-dimensional topology, functional analysis and descriptive set theory are primarily used for the study of these spaces. The mix of methods from several disciplines makes the subject particularly interesting. Among other things, a complete and self-contained proof of the Dobrowolski-Marciszewski-Mogilski Theorem that all function spaces of low Borel complexity are topologically homeomorphic, is presented.

In order to understand what is going on, a solid background in infinite-dimensional topology is needed. And for that a fair amount of knowledge of dimension theory as well as ANR theory is needed. The necessary material was partially covered in our previous book Infinite-dimensional topology, prerequisites and introduction'. A selection of what was done there can be found here as well, but completely revised and at many places expanded with recent results. Ascenic' route has been chosen towards the Dobrowolski-Marciszewski-Mogilski Theorem, linking the results needed for its proof to interesting recent research developments in dimension theory and infinite-dimensional topology.

The first five chapters of this book are intended as a text for graduate courses in topology. For a course in dimension theory, Chapters 2 and 3 and part of Chapter 1 should be covered. For a course in infinite-dimensional topology, Chapters 1, 4 and 5. In Chapter 6, which deals with function spaces, recent research results are discussed. It could also be used for a graduate course in topology but its flavor is more that of a research monograph than of a textbook; it is therefore more suitable as a text for a research seminar. The book consequently has the character of both textbook and a research monograph. In Chapters 1 th


No. of pages:
© North Holland 2001
North Holland
eBook ISBN:
Hardcover ISBN:


@qu:We strongly recommend this book to mathematicians working in Cp-theory, infinite-dimensional topology, or dimension theory and also to students interested in these topics. @source:Mathematical Reviews

About the Authors

J. van Mill Author

Affiliations and Expertise

Vrije Universiteit, Department of Mathematics and Computer Science, Amsterdam, The Netherlands