COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
The Finite Element Method in Engineering - 6th Edition - ISBN: 9780128117682, 9780128143643

The Finite Element Method in Engineering

6th Edition

Author: Singiresu Rao
Paperback ISBN: 9780128117682
eBook ISBN: 9780128143643
Imprint: Butterworth-Heinemann
Published Date: 31st October 2017
Page Count: 782
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


The Finite Element Method in Engineering, Sixth Edition, provides a thorough grounding in the mathematical principles behind the Finite Element Analysis technique—an analytical engineering tool originated in the 1960's by the aerospace and nuclear power industries to find usable, approximate solutions to problems with many complex variables. Rao shows how to set up finite element solutions in civil, mechanical and aerospace engineering applications. The new edition features updated real-world examples from MATLAB, Ansys and Abaqus, and a new chapter on additional FEM topics including extended FEM (X-FEM). Professional engineers will benefit from the introduction to the many useful applications of finite element analysis.

Key Features

  • Includes revised and updated chapters on MATLAB, Ansys and Abaqus
  • Offers a new chapter, Additional Topics in Finite Element Method
  • Includes discussion of practical considerations, errors and pitfalls in FEM singularity elements
  • Features a brief presentation of recent developments in FEM including extended FEM (X-FEM), augmented FEM (A-FEM) and partition of unity FEM (POUFEM)
  • Features improved pedagogy, including the addition of more design-oriented and practical examples and problems
  • Covers real-life applications, sample review questions at the end of most chapters, and updated references


3rd and 4th year students in mechanical, structural, civil, and aerospace engineering. Practicing engineers learning finite element methods

Table of Contents

Part 1. Introduction
1. Overview of the Finite Element Method

Part 2. Basic Procedure
2. Discretization of the Domain
3. Interpolation Models
4. Higher Order and Isoparametric Elements
5. Derivation of Element Matrices and Vectors
6. Assembly of Element Matrices and Vectors and Derivation of System Equations
7. Numerical Solution of Finite Element Equations

Part 3. Application to Solid Mechanics Problems
8. Basic Equations and Solution Procedure
9. Analysis of Trusses, Beams and Frames
10. Analysis of Plates
11. Analysis of Three-Dimensional Problems
12. Dynamic Analysis

Part 4. Application to Heat Transfer Problems
13. Formulation and Solution Procedure
14. One-Dimensional Problems
15. Two-Dimensional Problems
16. Three-Dimensional Problems

Part 5. Application to Fluid Mechanics Problems
17. Basic Equations of Fluid Mechanics
18. Inviscid and Incompressible Flows
19. Viscous and Non-Newtonian Flows

Part 6. Solution and Applications of Quasi-Harmonic Equations
20. Solution of Quasi-Harmonic Equations

Part 7. ABAQUS and ANSYS Software and MATLAB® Programs for Finite Element Analysis
21. Finite Element Analysis Using ABAQUS
22. Finite Element Analysis Using ANSYS
23. MATLAB Programs for Finite Element Analysis

A Comparison of Finite Element Method with other Methods of Analysis
B Green-Gauss Theorem (Integration by Parts in Two and Three Dimensions)


No. of pages:
© Butterworth-Heinemann 2017
31st October 2017
Paperback ISBN:
eBook ISBN:

About the Author

Singiresu Rao

Mechanical Design, Optimization and Reliability in Mechanical and Structural Design, Finite Element methods, Structural Dynamics.


1. Multi-objective optimization.

2. Uncertainty models in engineering analysis, design and optimization.

3. Reliability based design.

4. Finite element and meshfree methods.

5. Optimization and reliability of renewable energy systems.


The Finite Element Method for Engineers, 5e, Elsevier, 2010; Mechanical Vibrations, 6th Edition, Pearson, 2016; Engineering Optimization Theory and Practice, 4th Edition, Wiley, 2009; Reliability Engineering, 1st Edition, Pearson, 2014

Affiliations and Expertise

Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA

Ratings and Reviews