The Dynamical Ionosphere
1st Edition
A Systems Approach to Ionospheric Irregularity
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity examines the Earth’s ionosphere as a dynamical system with signatures of complexity. The system is robust in its overall configuration, with smooth space-time patterns of daily, seasonal and Solar Cycle variability, but shows a hierarchy of interactions among its sub-systems, yielding apparent unpredictability, space-time irregularity, and turbulence. This interplay leads to the need for constructing realistic models of the average ionosphere, incorporating the increasing knowledge and predictability of high variability components, and for addressing the difficulty of dealing with the worst cases of ionospheric disturbances, all of which are addressed in this interdisciplinary book.
Borrowing tools and techniques from classical and stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science, The Dynamical Ionosphere presents the state-of-the-art in dealing with irregularity, forecasting ionospheric threats, and theoretical interpretation of various ionospheric configurations.
Key Features
- Presents studies addressing Earth’s ionosphere as a complex dynamical system, including irregularities and radio scintillation, ionospheric turbulence, nonlinear time series analysis, space-ionosphere connection, and space-time structures
- Utilizes interdisciplinary tools and techniques, such as those associated with stochastic dynamics, information theory, signal processing, fluid dynamics and turbulence science
- Offers new data-driven models for different ionospheric variability phenomena
- Provides a synoptic view of the state-of-the-art and most updated theoretical interpretation, results and data analysis tools of the "worst case" behavior in ionospheric configurations
Readership
Geophysicists, Plasma Physicists, Space Physicists, as well as graduate students and upper level undergraduates in these areas. Also researchers in other applied physics fields, including astronomy
Table of Contents
The Earth’s Ionosphere, An Overview
1. Introduction
2. Day-to-day Variability of the Ionosphere
3. Ionospheric Conjugate Point Science: Hemispheric Coupling
4. Status and Future Directions
5. Mid-Latitude Ionospheric Features: Natural Complexity In Action
6. Empirical Ionospheric Models
7. Wrap Up
Global Complexity
8. Complex Dynamics of the Sun-Earth Interaction
9. Storms and Sub-storms
10. Geomagnetically Induced Currents
Local Irregularities
11. From instabilities to irregularities
12. Equatorial F region Irregularities
13. Scintillation Theory
The Future Era of Ionospheric Science
14. The Complex Ionosphere
15. New high resolution techniques to probe the ionosphere
16. Advanced Statistical Tools in Near-Earth Space Science
17. Ionospheric Science in the age of Big Data
18. Scintillation Modeling
19. Multiscale Analysis of the Turbulent Ionospheric Medium
20. The future Ionospheric Physics
Details
- No. of pages:
- 337
- Language:
- English
- Copyright:
- © Elsevier 2020
- Published:
- 27th November 2019
- Imprint:
- Elsevier
- Paperback ISBN:
- 9780128147825
- eBook ISBN:
- 9780128147832
About the Editors
Massimo Materassi
Massimo Materassi received his PhD in theoretical physics, and served his post-doc in near-Earth plasma turbulence. He is now a researcher for the National Research Council in Italy. His research interests include space weather dynamics, turbulence, information analysis, theoretical dynamical models, plasma physics, and dissipative processes.
Affiliations and Expertise
Researcher, National Research Council, Italy
Biagio Forte
Biagio Forte is a Research Fellow for the Department of Electronic and Electrical Engineering at the University of Bath. His research interests include physics and chemistry of the upper ionised atmosphere, plasma turbulence and instabilities in magnetized plasmas, trans-ionospheric radio waves propagation, radio wave scintillation (ionospheric and interplanetary), radio occultation, and space weather effect mitigation.
Affiliations and Expertise
Research Fellow, Department of Electronic and Electrical Engineering, University of Bath, UK
Anthea Coster
Anthea J. Coster is Assistant Director and Principal Research Scientist at MIT’s Haystack Observatory, which collaborates with faculty and staff in various departments and laboratories at MIT and includes a 37-meter radio telescope for observation. Her research interests include physics of the ionosphere, magnetosphere, and thermosphere, GPS positioning and measurement accuracy, space weather and storm time effects, and magnetosphere and ionosphere coupling.
Affiliations and Expertise
Assistant Director and Principal Research Scientist, MIT Haystack Observatory, MA, USA
Susan Skone
Susan Skone is Associate Professor of Geomatics Engineering at the University of Calgary. Dr. Skone's research focuses on Global Navigation Satellite Systems (GNSS). Specific interests include ionosphere modeling for wide area differential GPS applications, scintillation monitoring for GPS, and water vapour estimation for GPS meteorology. Dr. Skone is also involved in several national and international working groups, and is active in Women in Science and Engineering activities at the University of Calgary.
Affiliations and Expertise
Associate Professor, Schulich School of Engineering - Geomatics Engineering, University of Calgary, Canada
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.