The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems

The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems

1st Edition - March 14, 2020

Write a review

  • Editors: Dinesh Peter, Amir Alavi, Bahman Javadi, Steven Fernandes
  • Paperback ISBN: 9780128163856
  • eBook ISBN: 9780128166093

Purchase options

Purchase options
DRM-free (PDF, EPub, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems discusses the recent, rapid development of Internet of things (IoT) and its focus on research in smart cities, especially on surveillance tracking systems in which computing devices are widely distributed and huge amounts of dynamic real-time data are collected and processed. Efficient surveillance tracking systems in the Big Data era require the capability of quickly abstracting useful information from the increasing amounts of data. Real-time information fusion is imperative and part of the challenge to mission critical surveillance tasks for various applications. This book presents all of these concepts, with a goal of creating automated IT systems that are capable of resolving problems without demanding human aid.  

Key Features

  • Examines the current state of surveillance tracking systems, cognitive cloud architecture for resolving critical issues in surveillance tracking systems, and research opportunities in cognitive computing for surveillance tracking systems
  • Discusses topics including cognitive computing architectures and approaches, cognitive computing and neural networks, complex analytics and machine learning, design of a symbiotic agent for recognizing real space in ubiquitous environments, and more
  • Covers supervised regression and classification methods, clustering and dimensionality reduction methods, model development for machine learning applications, intelligent machines and deep learning networks
  • includes coverage of cognitive computing models for scalable environments, privacy and security aspects of surveillance tracking systems, strategies and experiences in cloud architecture and service platform design


Systems designers, biomedical engineers, biomedical researchers and policy makers in health care and medicine

Table of Contents

  • SECTION I: Cognitive Computing Theory, Architectures and Approaches
    SECTION II: Cognitive Computing and Artificial Intelligence
    SECTION III: Complex Analytics and Machine Learning for Cognitive Computing
    SECTION IV: Design of a Symbiotic Agent for Recognizing Real Space in Ubiquitous Environments
    SECTION V: Intelligent Adaptation and the Nature of Software Changes
    SECTION VI: The Reactive-Causal Cognitive Agent Architecture
    SECTION VII: Cognitive Computing for Internet of Things
    SECTION VIII: Google’s DeepMind and Other AI Programs
    SECTION IX: Cognitive Computing Applications in Surveillance Tracking Systems
    SECTION X: Cognitive Computing in Big Data Applications

Product details

  • No. of pages: 202
  • Language: English
  • Copyright: © Academic Press 2020
  • Published: March 14, 2020
  • Imprint: Academic Press
  • Paperback ISBN: 9780128163856
  • eBook ISBN: 9780128166093

About the Editors

Dinesh Peter

J. Dinesh Peter is Program Coordinator for the Department of Computer Sciences Technology at Karunya University, and author of more than 25 academic articles/chapters/conference papers. He has been active in government and industry as the developer of new technologies including Digital Image Processing, Virtual Reality Technology, Medical Image Processing, Computer Vision, and Optimization. He has been Guest Editor of a special issue of the Elsevier journal Computers and Electrical Engineering, and Guest Editor of special issues of the Journal of Cloud Computing and Journal of Big Data Intelligence. Dr. Peter received his Ph.D. in Computer Science and Engineering from National Institute of Technology Calicut, India.

Affiliations and Expertise

Associate Professor, Department of Computer Sciences Technology, Karunya University, India

Amir Alavi

Dr. Amir H. Alavi is an Assistant Professor in the Department of Civil and Environmental Engineering, and holds a courtesy appointment in the Department of Bioengineering at the University of Pittsburgh. Prior to joining Pitt, Dr. Alavi was an Assistant Professor of Civil Engineering at the University of Missouri. Dr. Alavi’s research interests include structural health monitoring, smart civil infrastructure systems, deployment of advanced sensors, energy harvesting, and engineering information systems. At Pitt, his Intelligent Structural Monitoring and Response Testing (iSMaRT) Lab focuses on advancing the knowledge and technology required to create self-sustained and multifunctional sensing and monitoring systems that are enhanced by engineering system informatics. His research activities involve implementation of these smart systems in the fields of civil infrastructure, construction, aerospace, and biomedical engineering. Dr. Alavi has worked on research projects supported by Federal Highway Administration (FHWA), National Institutes of Health (NIH), National Science Foundation (NSF), Missouri DOT, and Michigan DOT. Dr. Alavi has authored five books and over 170 publications in archival journals, book chapters, and conference proceedings. He has received a number of award certificates for his journal articles. He is among the Google Scholar 200 Most Cited Authors in Civil Engineering, as well as Web of Science ESI's World Top 1% Scientific Minds. He has served as the editor/guest editor of several journals such as Sensors, Case Studies in Construction Material, Automation in Construction, Geoscience Frontiers, Smart Cities, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, and Advances in Mechanical Engineering.

Affiliations and Expertise

Department of Civil and Environmental Engineering, Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA

Bahman Javadi

Bahman Javadi is a Senior Lecturer in Networking and Cloud Computing at the Western Sydney University, Australia. Prior to this appointment, he was a Research Fellow at the University of Melbourne, Australia. From 2008 to 2010, he was a Postdoctoral Fellow at the INRIA Rhone-Alpes, France. He received his MS and PhD degrees in Computer Engineering from the Amirkabir University of Technology in 2001 and 2007, respectively. He has been a Research Scholar at the School of Engineering and Information Technology, Deakin University, Australia during his PhD course. He is co-founder of the Failure Trace Archive, which serves as a public repository of failure traces and algorithms for distributed systems. He has published more than 90 research papers and received numerous Best Paper Awards at IEEE/ACM conferences for his papers. He served as a program committee of many international conferences and workshops. His research interests include Cloud computing, performance evaluation of large scale distributed computing systems, and reliability and fault tolerance. He is a member of ACM and senior member of IEEE.

Affiliations and Expertise

School of Computing, Engineering and Mathematics, Western Sydney University, Australia

Steven Fernandes

Steven L. Ferandes is a post-doctoral researcher in the Department of Electrical and Computer Engineering, University of Alabama at Birmingham, and author of more than 35 academic articles/chapters/conference papers. He has been active in industry as the developer of new technologies including Socket Development for Validation of Standard Cll Automation Tool Used in Test Chip Design, Automation Framework for Web Services, Automation Framework for Mobile Applications (Android, iOS, Windows), Python programming for Computer Vision, Machine Learning, and Deep Learning. Dr. Fernandes received his Ph.D. in Computer Vision and Machine Learning from Karunya University, Coimbatore, India.

Affiliations and Expertise

Department of Electrical and Computer Engineering, University of Alabama at Birmingham, USA

Ratings and Reviews

Write a review

There are currently no reviews for "The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems"