Description

With pressure increasing to utilise wastes and residues effectively and sustainably, the production of biogas represents one of the most important routes towards reaching national and international renewable energy targets. The biogas handbook: Science, production and applications provides a comprehensive and systematic guide to the development and deployment of biogas supply chains and technology.

Following a concise overview of biogas as an energy option, part one explores biomass resources and fundamental science and engineering of biogas production, including feedstock characterisation, storage and pre-treatment, and yield optimisation. Plant design, engineering, process optimisation and digestate utilisation are the focus of part two. Topics considered include the engineering and process control of biogas plants, methane emissions in biogas production, and biogas digestate quality, utilisation and land application. Finally, part three discusses international experience and best practice in biogas utilisation. Biogas cleaning and upgrading to biomethane, biomethane use as transport fuel and the generation of heat and power from biogas for stationery applications are all discussed. The book concludes with a review of market development and biomethane certification schemes.

With its distinguished editors and international team of expert contributors, The biogas handbook: Science, production and applications is a practical reference to biogas technology for process engineers, manufacturers, industrial chemists and biochemists, scientists, researchers and academics working in this field.

Key Features

  • Provides a concise overview of biogas as an energy option
  • Explores biomass resources for production
  • Examines plant design and engineering and process optimisation

Readership

Process engineers and manufacturers; Industrial biochemists/chemists; Biogas plant operators; Scientists, researchers and academics in the fields of renewable energy, agricultural technology and waste management

Table of Contents

Contributor contact details

Woodhead Publishing Series in Energy

Foreword

Preface

Organisations supporting IEA Bioenergy Task 37 - Energy from Biogas

Part 1: Biomass resources, feedstock treatment and biogas production

Chapter 1: Biogas as an energy option: an overview

Abstract:

1.1 Introduction

1.2 Biogas technologies and environmental efficiency

1.3 Political drivers and legislation

1.4 Health, safety and risk assessment

1.5 Conclusions and future trends

1.6 Sources of further information and advice

Chapter 2: Biomass resources for biogas production

Abstract:

2.1 Introduction

2.2 Categories of biomass appropriate as feedstocks for biogas production

2.3 Characteristics of biogas feedstock

2.4 Resource availability and supply chain issues

2.5 Conclusion

Chapter 3: Analysis and characterisation of biogas feedstocks

Abstract:

3.1 Introduction

3.2 Preliminary feedstock characterisation

3.3 Essential laboratory analysis of feedstocks

3.4 Additional laboratory analysis of feedstocks

3.5 Detailed feedstock evaluation

3.6 Conclusions

3.7 Sources of further information and advice

Chapter 4: Storage and pre-treatment of substrates for biogas production

Abstract:

4.1 Introduction

4.2 Storage and ensiling of crops for biogas production

4.3 Pre-treatment technologies for biogas production

4.4 Conclusion and future trends

Chapter 5: Fundamental science and engineering of the anaerobic digestion process for biogas production

Abstract:

5.1 Introduction

5.2 Microbiology

5.3 Microbial environment

5.4 Gas production and feedstocks

5.5 Reactor configuration

5.6 Parasitic energy demand of process

5.7 Laboratory analysis and scale up

Details

No. of pages:
512
Language:
English
Copyright:
© 2013
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9780857094988
Electronic ISBN:
9780857097415

Reviews

The extent and depth of knowledge and experience captured in The Biogas Handbook will help the emerging AD and biogas industries construct and operate state-of-the-art (and science) biogas plants., BioCycle
As an Editor, I am impressed with the handbook's ability to convey technical and scientific information in a style that can be understood by individuals with varying levels of knowledge about the topics discussed., Nora Goldstein, BioCycle