Structural Health Monitoring (SHM) in Aerospace Structures - 1st Edition - ISBN: 9780081001486, 9780081001585

Structural Health Monitoring (SHM) in Aerospace Structures

1st Edition

Editors: Fuh-Gwo Yuan
eBook ISBN: 9780081001585
Hardcover ISBN: 9780081001486
Imprint: Woodhead Publishing
Published Date: 17th March 2016
Page Count: 514
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
205.00
143.50
143.50
143.50
143.50
143.50
164.00
164.00
170.00
119.00
119.00
119.00
119.00
119.00
136.00
136.00
285.00
213.75
213.75
213.75
213.75
213.75
228.00
228.00
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Part One: SHM Technologies for Damage Detection, Diagnosis and Prognosis in Aerospace Structures: Application and Efficient Use

1. Integrated Vehicle Health Management (IVHM)
2. A Novel Approach for Implementing Structural Health Monitoring Systems for Aerospace Structures

Part Two: Smart Materials for SHM in Aerospace Structures

3. Piezoelectric Materials for SHM in Aerospace Structures
4. Electroactive Polymers for SHM in Aerospace Structures
5. Using Optical Fibers for Ultrasonic Damage Detection in Aerospace Structures
6. Flexoelectricity in Aerospace Structures
7. Energy Harvesting using Piezoelectric Materials in Aerospace Structures
8. Diamagnetically Levitated Vibration Energy Harvester in Aerospace Structures

Part Three: Innovative SHM Technologies for Damage Diagnosis in Aerospace Structures

9. Array Imaging with Guided Waves under Variable Environmental Conditions
10. Phase Array Techniques for Damage Detection in Aerospace Structures
11. Defect detection, classification and sizing using ultrasound
12. Non-contact Laser Ultrasonics for SHM in Aerospace Structures
13. Nonlinear Ultrasonics for Health Monitoring of Aerospace Structures using Active Sparse Sensor Networks
14. Space-Wavenumber and Time-Frequency Analyses for Vibration- and Wave-based Damage Diagnosis

Part Four: Innovative SHM Technologies for Damage Prognosis in Aerospace Structures

15. Fatigue damage diagnosis and prognosis using EMI technique
16. An Energy-based Prognostic Framework to Predict Evolution of Damage


Description

Structural Health Monitoring (SHM) in Aerospace Structures provides readers with the spectacular progress that has taken place over the last twenty years with respect to the area of Structural Health Monitoring (SHM). The widespread adoption of SHM could both significantly improve safety and reduce maintenance and repair expenses that are estimated to be about a quarter of an aircraft fleet’s operating costs.

The SHM field encompasses transdisciplinary areas, including smart materials, sensors and actuators, damage diagnosis and prognosis, signal and image processing algorithms, wireless intelligent sensing, data fusion, and energy harvesting. This book focuses on how SHM techniques are applied to aircraft structures with particular emphasis on composite materials, and is divided into four main parts.

Part One provides an overview of SHM technologies for damage detection, diagnosis, and prognosis in aerospace structures. Part Two moves on to analyze smart materials for SHM in aerospace structures, such as piezoelectric materials, optical fibers, and flexoelectricity. In addition, this also includes two vibration-based energy harvesting techniques for powering wireless sensors based on piezoelectric electromechanical coupling and diamagnetic levitation. Part Three explores innovative SHM technologies for damage diagnosis in aerospace structures. Chapters within this section include sparse array imaging techniques and phase array techniques for damage detection. The final section of the volume details innovative SHM technologies for damage prognosis in aerospace structures.

This book serves as a key reference for researchers working within this industry, academic, and government research agencies developing new systems for the SHM of aerospace structures and materials scientists.

Key Features

  • Provides key information on the potential of SHM in reducing maintenance and repair costs
  • Analyzes current SHM technologies and sensing systems, highlighting the innovation in each area
  • Encompasses chapters on smart materials such as electroactive polymers and optical fibers

Readership

R&D managers and engineers in aerospace; researchers working in industry, academia and government research agencies developing new systems for the SHM of aerospace structures, materials scientists.


Details

No. of pages:
514
Language:
English
Copyright:
© Woodhead Publishing 2016
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780081001585
Hardcover ISBN:
9780081001486

About the Editors

Fuh-Gwo Yuan Editor

•PhD, Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign

•MS, Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign

•BS, Engineering Science, National Cheng-Kung University

Dr. Yuan is currently developing methods for structural diagnosis and prognosis (involves evaluating remaining life of structures using failure/statistical analysis tools), a wireless sensor that monitors structural integrity, in addition to methods for in-situ, mount-ed/embedded sensors for multi-functional composite structures. He is also studying bio-inspired morphing technologies for civil, mechanical, and aerospace structures.

Affiliations and Expertise

Professor, Department of Mechanical and Aerospace Engineering, North Carolina State University, USA