Stability and Ductility of Steel Structures

1st Edition

Editors: T. Usami Y. Itoh
Hardcover ISBN: 9780080433202
eBook ISBN: 9780080541624
Imprint: Pergamon
Published Date: 23rd July 1998
Page Count: 433
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


The near-field earthquake which struck the Hanshin-Awaji area of Japan before dawn on January 17, 1995, in addition to snatching away the lives of more than 6,000 people, inflicted horrendous damage on the region's infrastructure, including the transportation, communication and lifeline supply network and, of course, on buildings, too. A year earlier, the San Fernando Valley area of California had been hit by another near-field quake, the Northridge Earthquake, which dealt a similarly destructive blow to local infrastructures. Following these two disasters, structural engineers and researchers around the world have been working vigorously to develop methods of design for the kind of structure that is capable of withstanding not only the far-field tectonic earthquakes planned for hitherto, but also the full impact of near-field earthquake.

Of the observed types of earthquake damage to steel structures, there are some whose causes are well understood, but many others continue to present us with unresolved problems. To overcome these, it is now urgently necessary for specialists to come together and exchange information.

The contents of this volume are selected from the Nagoya Colloquium proceedings will become an important part of the world literature on structural stability and ductility, and will prove a driving force in the development of future stability and ductility related research and design.


For engineers and researchers involved in steel structures.

Table of Contents

Foreword. Preface. State-of-the-Art. History of research and practice of the stability of steel structures in the twentieth century (T.V. Galambos). Beams and Beam-Columns. Multiple design curves for beam lateral buckling (N.S. Trahair). Restraint of beams of trapezoidally sheeting using different types of connection (J. Lindner). Elasto-plastic behavior of laterally-braced compression members (H. Fukao et al.). Inelastic behavior of steel beam-columns subject to varying axial force and cyclic bending moment (S. Yamazaki, S. Minami). Steel and Composite Frames. Inelastic buckling strength of portal frames subjected to beam loads (S. Morino et al.). Steady-state limit analysis of framed structures using incremental perturbation method (K. Uetani, Y. Araki). A simplified analysis of steels frames fail by local and global instability (T. Sakimoto et al.). Analysis of nonlinear behavior of steel frames under local fire conditions (Z.Y. Shen, J.C. Zhao). Effects of viscous damping models, hysteretic models and ground motion characteristics on seismic p-delta strength amplification factors (R. Tremblay et al.). Quasi-static cyclic and pseudo-dynamic tests on composite substructures with softening behaviour (O.S. Bursi, R. Zandonini). Pseudo-dynamic tests and analysis on semi-rigidly jointed steel frames (K. Ohi, X.G. Lin). Recent achievements in substructuring on-line pseudodynamic tests at IIS (K. Takanashi). Design of steel structures with LRFD using advanced analysis (W.F. Chen, S.E. Kim). Deformation and ductility demands in steel moment frame structures (H. Krawinkler, A. Gupta). Ductility demand associated with seismic input (H. Akiyama). Seismic design by plastic analysis (S.C. Goel, S. Leelataviwat). Moment redistribution and joint detailing issues in the design of composite frames (D.A. Nethercot). Plates and Plated Structures. Ultimate strength of biaxially


No. of pages:
© Pergamon 1998
eBook ISBN:
Hardcover ISBN:

About the Editor

T. Usami

Affiliations and Expertise

Department of Civil Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Y. Itoh

Affiliations and Expertise

Centre for Integrated Research in Science and Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan


@qu:The contents of this volume, selected from the Nagoya colloquium proceedings will become an important part of the world literature on structural stability and ductility, and will prove a driving force in the development of future stability and ductility related research and design. @source:Documentation: Technique/Scientific @qu:Stability and Ductility of Steel Structures. This publication includes a collection of selected papers form the Fourth International Colloquium on Stability and Ductility of Steel Structures, held in July 1997 in Nagoya, Japan. The book covers a wide range of research on steel structures, including the history of research and practice in this area, beams and beam-columns, steel and composite frames, connections, bridges and bridge piers, as well as evaluation and retrofit of damaged structures. Individual papers detail methods of design for steel structures that will be capable of withstanding major disasters, such as the Kobe and Northridge earthquakes. @source:MCEER Information Service News