Source Separation and Machine Learning - 1st Edition - ISBN: 9780128045664

Source Separation and Machine Learning

1st Edition

Authors: Jen-Tzung Chien
Hardcover ISBN: 9780128045664
Imprint: Academic Press
Published Date: 1st November 2018
Page Count: 240
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Source Separation and Machine Learning highlights the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches, using the latest information on mixture signals to build a BSS model which is seen as a statistical model for a whole system.

Looking at different models such as independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), this book addresses how these have evolved to deal with multichannel source separation and single-channel source separation, and explains the weaknesses and the strengths of these models in different mixing conditions.

Key Features

  • The first book to emphasize the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning
  • Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning all in one book
  • Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems

Readership

Graduate students and researchers in electrical engineering and computer science who are working on blind source separation problems using machine learning; Practitioners using Blind Source Separation systems

Table of Contents

Part I Fundamental Theories
1. Introduction
2. Model-based blind source separation
3. Adaptive learning machines

Part II Advanced Studies
4. Independent component analysis
5. Nonnegative matrix factorization
6. Nonnegative tensor factorization
7. Deep neural network

Details

No. of pages:
240
Language:
English
Copyright:
© Academic Press 2019
Published:
Imprint:
Academic Press
Hardcover ISBN:
9780128045664

About the Author

Jen-Tzung Chien

Jen-Tzung Chien received his Ph.D. degree in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, ROC, in 1997. During 1997-2012, he was with the National Cheng Kung University, Tainan, Taiwan. He has been with the Department of Electrical and Computer Engineering, National Chiao Tung University (NCTU), Hsinchu since 2012. He currently serves as an adjunct professor in the Department of Computer Science, NCTU. He has held Visiting Professor Positions at the Panasonic Technologies Inc., Santa Barbara, CA, the Tokyo Institute of Technology, Japan, the Georgia Institute of Technology, Atlanta, GA, the Microsoft Research Asia, Beijing, China, and the IBM T. J. Watson Research Center, Yorktown Heights, NY. Dr. Chien served as the associate editor of the IEEE Signal Processing Letters in 2008-2011 and the tutorial speaker of the ICASSP, in 2012, the INTERSPEECH, in 2013, the APSIPA, in 2013, and the ISCSLP, in 2014. He received the Distinguished Research Awards from the Ministry of Science and Technology, Tawian and the Best Paper Award of the IEEE Automatic Speech Recognition and Understanding Workshop in 2011. He is currently serving as an elected member of the IEEE Machine Learning for Signal Processing Technical Committee.

Affiliations and Expertise

Department of Electrical and Computer Engineering, National Chiao Tung University, Taiwan

Ratings and Reviews