Solar Energy Conversion - 2nd Edition - ISBN: 9780444898180, 9780080541426

Solar Energy Conversion

2nd Edition

The Solar Cell

Authors: R.C. Neville
Hardcover ISBN: 9780444898180
eBook ISBN: 9780080541426
Imprint: Elsevier Science
Published Date: 30th January 1995
Page Count: 426
Tax/VAT will be calculated at check-out
270.00
165.00
205.00
270.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

Preface. Energy Needs - Energy Sources. Introduction. Consumption. Conventional Sources of Energy. Alternative Energy Sources. Nuclear fusion. Solar energy. Temperature differences. Thermodynamics. Ocean temperature-difference generators. Solar-thermal. Solar-electric. References. The Sun and Sunlight. Introduction. Sunlight. Geometrical Effects. Weather. Light Collection. Lens systems. Mirrors. Optical materials. Maximum optical concentration. References. Semiconductors. Introduction. Crystal Structure. Quantum Mechanics and Energy Bands. Electrons and Holes. Currents. Recombination and Carrier Lifetime. Junctions. References. Light-Semiconductor Interaction. Introduction. Reflection. Light Interaction. Preliminary Material Selection. Absorption. Reflection and Absorption. References. Basic Theoretical Performance. Introduction. Local Electric Fields. PN Junction Electrical Characteristics. Heterojunction Electrical Characteristics. Electrical Characteristics of Schottky Junctions. Open Circuit Voltage and Short Circuit Current. Optimum Power Conditions. References. Solar Cell Configuration and Performance. Introduction. Optical Orientation. Device Design - Minority Carrier Collection. Device Design - Saturation Current. Device Design - Series Resistance. Solar Cell Performance - Discussion. References. Advanced Approaches. Introduction. Temperature Effects. Heat Flow within a Solar Cell. Optical Concentration - Photocurrent. Performance under Concentration. References. Advanced Approaches - II. Introduction. Second Stage Solar Power Systems. Third Generation Solar Cell Systems. Miscellaneous Approaches. References. Polycrystalline and Amorphous Solar Cells. Introduction. Polycrystalline Solar Cells. Cadmium Sulfide/Copper Sulfide. Copper Indium Selenide (CIS). Polycrystalline Silicon. Thin film Cadmium Telluride. Other possibilities for polycrystalline solar cells. Final comments on polycrystalline solar cells. Amorphous Material Based Solar Cells. Amorphous Silicon. Concluding Remarks. References. Concluding Thoughts. Introduction. Economics. Electrical Energy Storage. The System. Final Words. References. Appendices. Conversion Factors. Selected Properties of Semiconductors with Solar Cell Potential. The Saturation Current in PN Junction Solar Cells. Some Useful Physical Constants. Symbols. Subject Index.

Table of Contents

Preface. Energy Needs - Energy Sources. Introduction. Consumption. Conventional Sources of Energy. Alternative Energy Sources. Nuclear fusion. Solar energy. Temperature differences. Thermodynamics. Ocean temperature-difference generators. Solar-thermal. Solar-electric. References. The Sun and Sunlight. Introduction. Sunlight. Geometrical Effects. Weather. Light Collection. Lens systems. Mirrors. Optical materials. Maximum optical concentration. References. Semiconductors. Introduction. Crystal Structure. Quantum Mechanics and Energy Bands. Electrons and Holes. Currents. Recombination and Carrier Lifetime. Junctions. References. Light-Semiconductor Interaction. Introduction. Reflection. Light Interaction. Preliminary Material Selection. Absorption. Reflection and Absorption. References. Basic Theoretical Performance. Introduction. Local Electric Fields. PN Junction Electrical Characteristics. Heterojunction Electrical Characteristics. Electrical Characteristics of Schottky Junctions. Open Circuit Voltage and Short Circuit Current. Optimum Power Conditions. References. Solar Cell Configuration and Performance. Introduction. Optical Orientation. Device Design - Minority Carrier Collection. Device Design - Saturation Current. Device Design - Series Resistance. Solar Cell Performance - Discussion. References. Advanced Approaches. Introduction. Temperature Effects. Heat Flow within a Solar Cell. Optical Concentration - Photocurrent. Performance under Concentration. References. Advanced Approaches - II. Introduction. Second Stage Solar Power Systems. Third Generation Solar Cell Systems. Miscellaneous Approaches. References. Polycrystalline and Amorphous Solar Cells. Introduction. Polycrystalline Solar Cells. Cadmium Sulfide/Copper Sulfide. Copper Indium Selenide (CIS). Polycrystalline Silicon. Thin film Cadmium Telluride. Other possibilities for polycrystalline solar cells. Final comments on polycrystalline solar cells. Amorphous Material Based Solar Cells. Amorphous Silicon. Concluding Remarks. References. Concluding Thoughts. Introduction. Economics. Electrical Energy Storage. The System. Final Words. References. Appendices. Conversion Factors. Selected Properties of Semiconductors with Solar Cell Potential. The Saturation Current in PN Junction Solar Cells. Some Useful Physical Constants. Symbols. Subject Index.

Details

No. of pages:
426
Language:
English
Copyright:
© Elsevier Science 1995
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780080541426
Hardcover ISBN:
9780444898180

About the Author

R.C. Neville

Affiliations and Expertise

Northern Arizona University, College of Engineering & Technology, Flagstaff, AZ, USA