Description

Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applications

Part one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.

With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering.

Key Features

  • Explores the thermodynamics of sintering including sinter bonding and densification
  • Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering
  • Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials

Readership

Researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing, and those using advanced materials in such sectors as electronics, automotive, and aerospace engineering

Table of Contents

Part 1 Fundamentals of sintering: Thermodynamics of sintering; Kinetics and mechanisms of densification; Path and kinetics of microstructural change in simple sintering; Computer modelling of sintering: Theory and examples; Liquid phase sintering; Master sintering curve and its application in sintering of ceramics. Part 2 Advanced sintering processes: Atmospheric sintering; Vacuum sintering; Microwave sintering of ceramics, composites and metal powders; Fundamentals and applications of field/current assisted sintering; Photonic sintering – an example: Photonic curing of silver nanoparticles. Part 3 Sintering of advanced materials: Sintering of aluminium and its alloys; Sintering of titanium and its alloys; Sintering of refractory metals; Sintering of ultrahard materials; Constrained sintering of ceramics, films and coatings; Sintering of ultrafine and nanosized particles.

Details

No. of pages:
500
Language:
English
Copyright:
© 2010
Published:
Imprint:
Woodhead Publishing
Electronic ISBN:
9781845699949
Print ISBN:
9781845695620
Print ISBN:
9780081014776

About the editor

Zhigang Zak Fang

Dr Zhigang Zak Fang is a Professor in the Powder Metallurgy Research Laboratory of the Faculty of Metallurgical Engineering at the University of Utah, USA.

Reviews

A useful reference for those involved in the technology of sintering. I highly recommend this book., Materials World