Silicate Glasses and Melts - 2nd Edition - ISBN: 9780444637086

Silicate Glasses and Melts

2nd Edition

Authors: Bjorn Mysen Pascal Richet
Paperback ISBN: 9780444637086
Imprint: Elsevier Science
Published Date: 1st October 2018
Page Count: 726
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses.

This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy.

Key Features

  • Brings together multidisciplinary research scattered across the scientific literature into one reference, with a focus on silicate melts and their application to natural systems
  • Emphasizes linking melt properties to melt structure
  • Includes a discussion of the pros and cons of the use of glass as a proxy for melt structure and properties
  • Written by highly regarded experts in the field who, among other honors, were the 2006 recipients of the prestigious G.W. Morey award of the American Ceramic Society

Readership

Geologists, geophysicists, geoscientists, volcanologists, material scientists, researchers in glass science, petrologists, and mineralogists

Table of Contents

Chapter 1 – The Discovery of Silicate Melts;
    An applied and Geological Perspective
Abstract
Introductory Comments
1.1.  The Early History of Glass
 1.1.1. The beginnings of an Art
 1.1.2. An Industrial Revolution
1.2. Glass and Science
 1.2.1. A Scientific Material
 1.2.3. The Effects of Composition
1.3. The Discovery of Natural Melts
 1.3.1. The Origin of Neptunism
 1.3.2. From Extinct Volcanoes to Magma
  1.3.2.1. New Importance of Silicate Melts
1.4. The Physical Chemistry of Melts
 1.4.1. The Measurements of physical Properties
 1.4.2. Toward the Glass Transition
 1.4.3. The First Glimpses of Structure
 1.4.4. The Search for New Compositions
 1.4.5. A Geological Outlook

Chapter 2 - Glass Versus Melt
Abstract
Introductory Comments
2.1. Relaxation
 2.1.1. Glass Transition Range
 2.1.2. Vibrational vs. Configurational Relaxation
 2.1.3. Relaxation Times
 2.1.4. Maxwell Model
 2.1.5. Local vs. Bulk Relaxation
2.2. Glass Transition
 2.2.1. A Microscopic Picture
 2.2.2. Rate Dependence of the Glass Transition
 2.2.3. Fictive Temperature
 2.2.4. Kauzmann Paradox and Residual Entropy
2.3. Configurational Properties
 2.3.1. Thermal Properties
 2.3.2. Volume Properties
 2.3.3. Permanent Compaction of Glass
 2.3.4. Permanent Compaction and Volatile Solubility
 2.3.5. Configurational Entropy and Viscosity
 2.3.6. Glass Formation

Chapter 3 - Glasses and Melts vs. Crystals
Abstract
Introductory Comments
3.1. Thermodynamic Properties
 3.1.1. High-Temperature Enthalpy and Entropy
 3.1.2. Low-Temperature Heat Capacity and Vibrational Entropy
 3.1.3. Boson Peak
 3.1.4. Configurational Entropy
3.2. Liquid-Like Character of Crystals
 3.2.1. Glass-like transitions
 3.2.2.  Transitions
 3.2.3. From Premelting to Melting and Crystallization

Chapter 4 – Structure and Property Concepts
Abstract
Introductory Comments
4.1. Bond Length, Bond Angle, and Bond Strength in Silicates
 4.1.1. Definitions and Concepts of Bonding
 4.1.2. Bond Strength, Bond Angle, and Composition
4.2. Basics of Silicate Structure
 4.2.1. Oxygen Coordination Polyhedra
 4.2.2. Network-Formers and Network-Modifiers
 4.2.3. The NBO/T Parameter
4.3. The tetrahedral Oxygen Network
 4.3.1. Bridging Oxygen Bonds
 4.3.2. Network-Formers and Si-based Structural Units
 4.3.3. Substitution of Si4+
  4.3.3.1. Aluminum Substitution
  4.3.3.2. Ferric Iron
  4.3.3.3. Phosphorus
  4.3.3.4. Titanium
4.4. Linkage between Tetrahedral Network Units
 4.4.1. The Nature of Nonbridging Oxygens Bonds
 4.2.2 Steric Hindrance and Ordering of Network-Modifying Cations
4.5. Composition, Bonding and Melt Properties
 4.5.1. Transport Properties
  4.5.1.1. Interrelationships of Transport Properties
 4.5.2. Thermal Properties
4.6. Mixing, Order, and Disorder
 4.6.1. Transport Properties and Cation Mixing
 4.6.2. Thermal Properties and Cation Mixing

Chapter 5 – Silica
Abstract
Introductory Comments
5.1. An Outstanding Oxide
 5.1.1. A Short Classification
 5.1.2. Phase Transitions: Melting and Amorphization
5.2. Physical and Thermal Properties
 5.2.1. Thermodynamics of Melting
 5.2.2. Thermodynamic Properties
 5.2.3. Volume Properties
 5.2.4. Transport Properties
  5.2.4.1. Viscosity
  5.2.4.2. Diffusion
5.3. Structure of SiO2 Glass and Melt
 5.3.1. Random Network Structure
 5.3.2. Pseudocrystalline Structure Model
 5.3.3. Numerical Simulations of Structure
5.4 Direct Structure Determination
 5.4.1. Bond Angles and Bond Lengths
  5.4.1.1. Pressure and Temperature
 5.4.2. Multiple Structural Units
5.5. Structure-Property relations

Chapter 6 – Properties of Metal Oxide-Silica Systems
Abstract
Introductory Comments
6.1. Phase relationships
 6.1.1. Liquidus and Solvus Relations
 6.1.2. Energetics, Phase Stability, and Immiscibility
 6.1.3. Steric Hindrance and Polymerized Structures
6.2 Thermal Properties
 6.2.1. Enthalpy of Mixing
 6.2.2. Thermodynamics of Melting
 6.2.3. Activity-Composition Relations
 6.2.4. Oxygen Activity and Acid-Base Reactions
 6.2.5. Energetics of Mixing
 6.2.5. Heat Capacity
6.3. Volume and Transport Properties
 6.3.1. Volume, Expansion, and Compressibility
  6.3.1.1. Volume and Thermal Expansion
  6.3.1.2. Volume and Compressibility
 6.3.2. Transport Properties
  6.3.2.1. Viscosity
  6.3.2.2. Diffusion
  6.3.2.3. Electrical Conductivity

Chapter 7 – Structure of Metal Oxide-Silica Systems
Abstract
Introductory Comments
7.1. Modeling Structure
 7.1.1. Pseudocrystalline and Quasichemical Models
 7.1.2. Polymer Modeling
 7.1.3. Thermodynamic Modeling
 7.1.4. Computational Models
  7.1.4.1. Bond Distance and Bond Angle
  7.1.4.2. Multiple Silicate Species
  7.1.4.3. Simulation of High-Pressure Structure
7.2. Direct Determination
 7.2.1. Silicate Network
 7.2.2. Network-Modifiers and Interconnectivity
 7.2.3. Temperature and Pressure
  7.2.3.1. Temperature
  7.2.3.2. Pressure
7.3. Structure and Melt Properties
 7.3.1. Thermal Properties
  7.3.1.1. Liquidus Surfaces
  7.3.1.2. Mixing
  7.3.1.3. Mixed Alkali Effect
 7.3.2. Physical Properties
  7.3.2.1. Volume Properties
  7.3.2.2. Transport Properties

Chapter 8 Properties of Aluminosilicate Systems
Abstract
Introductory Comments
8.1 Phase Relationships
 8.1.1. Liquidus Relations
 8.1.2. Energetics, Phase Stability, and Immiscibility
 8.1.3. Glass Formation
8.2. Thermal Properties
 8.2.1. Thermodynamics of Melting
 8.2.2. Activity-Composition Relations
 8.2.3. Energetics of Mixing
 8.2.4. Heat Capacity
8.3. Physical Properties
 8.3.1. Transport Properties
  8.3.1.1. Viscosity
  8.3.1.2. Diffusion
 8.3.2. Volume, Expansion, and Compressibility
  8.3.2.1. Volume and Thermal Expansion
  8.3.2.2. Pressure and Compressibility

Chapter 9 – Structure of Aluminosilicate Glass and Melt
Abstract
Introductory Comments
9.1. Numerical Simulation of Structure
 9.1.1. Compositions without Charge-Balance
  9.1.1.1. Al2O3 Simulations
  9.1.1.2. Al2O3-SiO2 Simulations
 9.1.2. Compositions with Charge-Balanced Al3+
  9.1.2.1. Mn+2/nO–Al2O3  Simulations
  9.1.2.2. SiO2-Mn+n/2O-Mn+-AlnO2n Simulations
9.2. Direct Determination
 9.2.1. Aluminate and Aluminosilicate with Al3+ Charge-Balance
  9.2.1.1. Al2O3 Data
  9.2.1.2. Al2O3-SiO2 Data
 9.2.2. Charge-Balanced Al3+
  9.2.2.1. Modifier Cation Data
  9.2.2.2. Mn+2/nO–Al2O3 Data
  9.2.2.3. Meta-Aluminosilicate Compositions
  9.2.2.4. Peralkaline and Peraluminous Compositions
9.3. Temperature and Pressure
 9.3.1. Temperature
 9.3.2. Pressure
9.4. Structure and Properties of Aluminosilicate Melts
 9.4.1. Thermal Properties
 9.4.2. Physical Properties
  9.4.2.1. Transport Properties
  9.4.2.2. Volume Properties

Chapter 10 - Properties of Iron-Silicate Glasses and Melts
Abstract
Introductory Comments
10.1. Ferrous and Ferric Iron
 10.1.1. Redox States
 10.1.2. Oxygen Fugacity
 10.1.3. Analysis of Redox Ratio
10.2. Phase Equilibria
 10.2.1. Ferrosilicate Phase Relations
 10.2.2. Ferrisilicate Phase Relations
 10.2.3. Phase Relations in Complex Systems
10.3. Iron Redox Reactions
 10.3.1. Temperature and Oxygen Fugacity
 10.3.2. Temperature and Pressure
 10.3.3. Oxygen Activity and Glass Basicity
 10.3.4. Composition and Redox State
 10.3.5. Water and Minor Components
 10.3.6. Prediction of Iron Redox Ratio
 10.3.7. Mechanisms of Redox Reactions
 10.3.8. Kinetics of Redox Reactions
10.4. Thermal Properties
 10.4.1. Thermodynamics of Melting
 10.4.2. Activity-Composition Relations
 10.4.3. Enthalpy of Mixing
 10.4.4. Heat Capacity
10.5. Other Physical Properties
 10.5.1. Density
 10.5.2. Transport Properties
  10.5.2.1. Transport Properties
  10.5.2.2. Diffusion

Chapter 11 – Structure of Iron-Silicate Glasses and Melts
Abstract
Introductory Comments
11.1. Fe3+ Distribution in Ferrisilicate Systems
 11.1.1. Ferric Iron Bond Length and Oxygen Coordination
 11.1.2. Fe3+ Distribution versus Clustering
11.2. Fe2+ in Silicate Systems
 11.2.1. Ferrous Iron Bond Length and Oxygen Coordination
11.3. Mixed Valence States
 11.3.1. Redox Ratio and Oxygen Coordination
 11.3.2. Iron-Silicate Interaction
 11.3.3. Temperature and Pressure
  11.3.3.1. Temperature
  11.3.3.2. Pressure
11.4. Structure and Melt Properties
 11.4.1. Thermal Properties
  11.4.1.1. Configurational Properties
 11.4.2. Physical Properties
  11.4.2.1. Transport Properties
  11.4.2.2. Volume Properties

Chapter 12 – Titanium-Bearing Systems
Abstract
Introductory Comments
12.1. Titanium Redox Reactions
12.2. Melting Relations
 12.2.1. Liquidus Relations in Binary, Ternary and more Complex Systems
  12.2.1.1. TiO2-SiO2
  12.2.1.2. TiO2-Al2O3-SiO2
  12.2.1.3. Mn+n/2-TiO2-SiO2
  12.2.1.4. Multicomponent Systems
 12.2.2. Titanium Solubility in Silicate Melts and Glasses
12.3. Thermal Properties
 12.3.1. Activity-Composition Relations
 12.3.2. Enthalpy, Entropy, and Heat Capacity
12.4. Physical Properties
 12.4.1. Transport Properties
 12.4.2. Volume, Expansion, and Compressibility
  12.4.2.1. Molar Volume
  12.4.2.2. Expansion and Compressibility
12.5 Structure
 12.5.1. Oxygen Coordination, Ti4+ Concentration, and Composition
  12.5.1.1. TiO2
  12.5.1.2. TiO2-SiO2
  12.5.1.3. Ti-bearing Multicomponent Glasses and Melts
 12.5.2. (Ti, Si) Substitution versus Ti Clustering
 12.5.3. Temperature and Pressure
12.6. Structure and Properties of Ti-bearing Melts
 12.6.1. Thermal Properties
 12.6.2. Physical Properties

Chapter 13 – Phosphorus in Silicate Systems
Abstract
Introductory Comments
13.1. Properties of Phosphorus-bearing Glasses and Melts
 13.1.1. Phase Relations
  13.1.1.1. Melting Relations in Chemically Simple Systems
  13.1.1.2. Melting Relations in Chemically Complex Systems
  13.1.1.3. Phosphorus Solubility in Silicate Glasses and Melts
 13.1.2. Thermal Properties
 13.1.3. Physical Properties
  13.1.3.1. Transport Properties
  13.1.3.2. Density, Volume, Compressibility and Expansion
13.2. Structure of Phosphorus-bearing Glasses and Melts
 13.2.1. Oxygen Coordination, P5+ Concentration, and Composition
  13.2.1.1. P2O5
  13.2.1.2. Binary Phosphate Systems
  13.2.1.3. Phosphosilicate Glasses and Melts
  13.2.1.4. Phosphate in Metal Oxide-Alumina-Silica Systems
  13.2.1.5. P5+ in Higher Coordination States
 13.2.2. (P, Si) Substitution versus P Clustering
 13.2.3. Structure and Temperature
13.3. Structure and Properties
 13.3.1. Thermal Properties
 13.3.2. Physical Properties

Chapter 14 - Properties of Hydrous Melt and Glass
Abstract
Introductory Comments
14.1 Phase Relations
 14.1.1. Melting and Crystallization
 14.1.2. Silicate-H2O Miscibility
 14.1.3. Water Solubility
  14.1.3.1. SiO2-H2O
  14.1.3.2. Metal Oxide-SiO2-H2O
  14.1.3.3. Aluminosilicate-H2O
 14.1.4. Water Solubility and Mixed Volatiles
14.2. Thermodynamic Properties
 14.2.1. Activity-Composition Relations
 14.2.2. Heat Capacity and Enthalpy
14.3 Other Physical Properties
 14.3.1. Transport Properties
  14.3.1.1. Viscosity
  14.3.1.2. Diffusivity
  14.3.1.3. Conductivity
 14.3.2. Volume, Compressibility, and Expansion
  14.3.2.1. Density and Volume
  14.3.2.2. Compressibility

Chapter 15 - Water Solution Mechanisms and Structure
Abstract
Introductory Comments
15.1. Water Speciation
 15.1.1. Composition, Temperature, and Pressure
15.2. Hydrous Melt and Glass Structure
 15.2.1. SiO2-H2O
 15.2.2. Metal Oxide-Silica-H2O
 15.2.3. Aluminosilicate-H2O
 15.2.4. H2O and Other Oxide Components
15.3. Structure and Properties
 15.3.1. Transport Properties and Structure
 15.3.2. Volume Properties and Structure
 15.3.3. Crystallization, Melting, and Structure
 15.3.4. Water Solubility, Solution Mechanisms, and Structure

Chapter 16 – Reactive Silicate-C-O-H-N-S Systems
Abstract
Introductory Comments
16.1. Concepts
16.2. Carbon in C-O-H Systems
 16.2.1. Solubility and Solution Mechanisms of Oxidized Carbon
  16.2.1.1. Carbon Dioxide
 16.2.2. Solubility and Solution Mechanisms of Reduced Carbon
  16.2.2.1. Carbon Monoxide (CO)
  16.2.2.2. Carbide
  16.2.2.3. Methane (CH4)
 16.2.3. Properties and Solution Mechanisms in (C-O-H) Systems
  16.2.3.1. Thermal Properties
  16.2.3.2. Transport Properties
  16.2.3.3. Volume Properties
16.3. Sulfur in S-O-H Systems
 16.3.1. Solubility and Solution Mechanisms of Oxidized Sulfur
 16.3.2. Solubility and Solution Mechanisms of Reduced Sulfur
 16.3.3. Properties and Solution Mechanisms in (S-O-H) Systems
  16.3.3.1. Thermal Properties
  16.3.3.2. Transport Properties
16.4. Nitrogen in N-O-H Systems
 16.4.1. Solubility and Solution Mechanisms of Reduced Nitrogen
 16.4.2. Oxynitride and Nitrosyl Substitution
  16.4.2.1. Nitrosyl Groups
  16.4.2.2. Oxynitride
 16.4.3. Properties and Solution Mechanisms in (N-O-H) Systems

Chapter 17 – Noble Gases, Molecular, Species, Hydrogen, and Halogens
Abstract
Introductory Comments
17.1. Noble Gases
 17.1.1. General Remarks
  17.1.2.1. Glasses and Melts along Silica - Meta-Aluminate Joins (SiO2-Mx+1/xAlO2)
  17.1.2.2. Peralkaline and Depolymerized Glasses and Melts
17.2. Molecular Species
 17.2.1. Solubility and Solution Mechanisms
  17.2.1.1. Nitrogen (N2)
  17.2.1.2. Hydrogen (H2)
17.3. Halogens
 17.3.1. Fluorine
  17.3.1.1. Solubility
  17.3.1.1. Solution Mechanisms
 17.3.2. Chlorine
  17.3.2.1. Solubility
  17.3.2.2. Solution Mechanisms
  17.3.2.3. Other Halogens
 17.3.3. Properties and Solution Mechanisms
  17.3.3.1. Liquidus Phase Relations
  17.3.3.2. Transport Properties

Chapter 18 – Chemically Complex Melts and Natural Magma
Abstract
Introductory Comments
18.1. Structure
 18.1.1. Degree of Polymerization, Network Formers, and Network Modifiers
 18.1.2. Qn-Species in Complex Systems
18.2. Properties
 18.2.1. Chemical Properties
  18.2.1.1. Melting and Crystallization
  18.2.1.2. Crystal/Liquid Equilibria
  18.2.1.3. Redox Relations of Iron
  18.2.1.4. Volatiles in Magmatic Liquids
   18.2.1.4.1. Water
   18.2.1.4.2. Mixed H2O-CO2
   18.2.1.4.3. Sulfur
 18.2.2. Physical Properties
  18.2.2.1. Volume Properties
  18.2.2.2. Transport Properties.
   9.2.2.2.1. Viscosity, Pressure, and Temperature
   9.2.2.2.2. Viscosity and Water

 

Details

No. of pages:
726
Language:
English
Copyright:
© Elsevier Science 2019
Published:
Imprint:
Elsevier Science
Paperback ISBN:
9780444637086

About the Author

Bjorn Mysen

Bjorn O. Mysen. Ph.D., Senior Scientist, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., Editor, Proceedings in Earth and Planetary Science, General Editor, Phase Diagrams for Ceramists (American Ceramic Society), Associate Editor, Geochimica et Cosmochimica Acta and American Mineralogist, Highly-cited scientist, Thompson ISI, 2001-present

Affiliations and Expertise

Senior Scientist, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C.

Pascal Richet

Pascal Richet, Ph.D., Physicist, Institut de Physique du Globe Paris, France, Highly-cited scientist, Thompson ISI, 2003

Affiliations and Expertise

Physicist, Institut de Physique du Globe de Paris, France

Ratings and Reviews