Silicate Glasses and Melts

Silicate Glasses and Melts

2nd Edition - November 27, 2018

Write a review

  • Authors: B. Mysen, P. Richet
  • eBook ISBN: 9780444637093
  • Paperback ISBN: 9780444637086

Purchase options

Purchase options
DRM-free (PDF, Mobi, EPub)
Available
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy.

Key Features

  • Brings together multidisciplinary research scattered across the scientific literature into one reference, with a focus on silicate melts and their application to natural systems
  • Emphasizes linking melt properties to melt structure
  • Includes a discussion of the pros and cons of the use of glass as a proxy for melt structure and properties
  • Written by highly regarded experts in the field who, among other honors, were the 2006 recipients of the prestigious G.W. Morey award of the American Ceramic Society

Readership

Geologists, geophysicists, geoscientists, volcanologists, material scientists, researchers in glass science, petrologists, and mineralogists

Table of Contents

  • Chapter 1 – The Discovery of Silicate Melts;
        An applied and Geological Perspective
    Abstract
    Introductory Comments
    1.1.  The Early History of Glass
     1.1.1. The beginnings of an Art
     1.1.2. An Industrial Revolution
    1.2. Glass and Science
     1.2.1. A Scientific Material
     1.2.3. The Effects of Composition
    1.3. The Discovery of Natural Melts
     1.3.1. The Origin of Neptunism
     1.3.2. From Extinct Volcanoes to Magma
      1.3.2.1. New Importance of Silicate Melts
    1.4. The Physical Chemistry of Melts
     1.4.1. The Measurements of physical Properties
     1.4.2. Toward the Glass Transition
     1.4.3. The First Glimpses of Structure
     1.4.4. The Search for New Compositions
     1.4.5. A Geological Outlook

    Chapter 2 - Glass Versus Melt
    Abstract
    Introductory Comments
    2.1. Relaxation
     2.1.1. Glass Transition Range
     2.1.2. Vibrational vs. Configurational Relaxation
     2.1.3. Relaxation Times
     2.1.4. Maxwell Model
     2.1.5. Local vs. Bulk Relaxation
    2.2. Glass Transition
     2.2.1. A Microscopic Picture
     2.2.2. Rate Dependence of the Glass Transition
     2.2.3. Fictive Temperature
     2.2.4. Kauzmann Paradox and Residual Entropy
    2.3. Configurational Properties
     2.3.1. Thermal Properties
     2.3.2. Volume Properties
     2.3.3. Permanent Compaction of Glass
     2.3.4. Permanent Compaction and Volatile Solubility
     2.3.5. Configurational Entropy and Viscosity
     2.3.6. Glass Formation

    Chapter 3 - Glasses and Melts vs. Crystals
    Abstract
    Introductory Comments
    3.1. Thermodynamic Properties
     3.1.1. High-Temperature Enthalpy and Entropy
     3.1.2. Low-Temperature Heat Capacity and Vibrational Entropy
     3.1.3. Boson Peak
     3.1.4. Configurational Entropy
    3.2. Liquid-Like Character of Crystals
     3.2.1. Glass-like transitions
     3.2.2.  Transitions
     3.2.3. From Premelting to Melting and Crystallization

    Chapter 4 – Structure and Property Concepts
    Abstract
    Introductory Comments
    4.1. Bond Length, Bond Angle, and Bond Strength in Silicates
     4.1.1. Definitions and Concepts of Bonding
     4.1.2. Bond Strength, Bond Angle, and Composition
    4.2. Basics of Silicate Structure
     4.2.1. Oxygen Coordination Polyhedra
     4.2.2. Network-Formers and Network-Modifiers
     4.2.3. The NBO/T Parameter
    4.3. The tetrahedral Oxygen Network
     4.3.1. Bridging Oxygen Bonds
     4.3.2. Network-Formers and Si-based Structural Units
     4.3.3. Substitution of Si4+
      4.3.3.1. Aluminum Substitution
      4.3.3.2. Ferric Iron
      4.3.3.3. Phosphorus
      4.3.3.4. Titanium
    4.4. Linkage between Tetrahedral Network Units
     4.4.1. The Nature of Nonbridging Oxygens Bonds
     4.2.2 Steric Hindrance and Ordering of Network-Modifying Cations
    4.5. Composition, Bonding and Melt Properties
     4.5.1. Transport Properties
      4.5.1.1. Interrelationships of Transport Properties
     4.5.2. Thermal Properties
    4.6. Mixing, Order, and Disorder
     4.6.1. Transport Properties and Cation Mixing
     4.6.2. Thermal Properties and Cation Mixing

    Chapter 5 – Silica
    Abstract
    Introductory Comments
    5.1. An Outstanding Oxide
     5.1.1. A Short Classification
     5.1.2. Phase Transitions: Melting and Amorphization
    5.2. Physical and Thermal Properties
     5.2.1. Thermodynamics of Melting
     5.2.2. Thermodynamic Properties
     5.2.3. Volume Properties
     5.2.4. Transport Properties
      5.2.4.1. Viscosity
      5.2.4.2. Diffusion
    5.3. Structure of SiO2 Glass and Melt
     5.3.1. Random Network Structure
     5.3.2. Pseudocrystalline Structure Model
     5.3.3. Numerical Simulations of Structure
    5.4 Direct Structure Determination
     5.4.1. Bond Angles and Bond Lengths
      5.4.1.1. Pressure and Temperature
     5.4.2. Multiple Structural Units
    5.5. Structure-Property relations

    Chapter 6 – Properties of Metal Oxide-Silica Systems
    Abstract
    Introductory Comments
    6.1. Phase relationships
     6.1.1. Liquidus and Solvus Relations
     6.1.2. Energetics, Phase Stability, and Immiscibility
     6.1.3. Steric Hindrance and Polymerized Structures
    6.2 Thermal Properties
     6.2.1. Enthalpy of Mixing
     6.2.2. Thermodynamics of Melting
     6.2.3. Activity-Composition Relations
     6.2.4. Oxygen Activity and Acid-Base Reactions
     6.2.5. Energetics of Mixing
     6.2.5. Heat Capacity
    6.3. Volume and Transport Properties
     6.3.1. Volume, Expansion, and Compressibility
      6.3.1.1. Volume and Thermal Expansion
      6.3.1.2. Volume and Compressibility
     6.3.2. Transport Properties
      6.3.2.1. Viscosity
      6.3.2.2. Diffusion
      6.3.2.3. Electrical Conductivity

    Chapter 7 – Structure of Metal Oxide-Silica Systems
    Abstract
    Introductory Comments
    7.1. Modeling Structure
     7.1.1. Pseudocrystalline and Quasichemical Models
     7.1.2. Polymer Modeling
     7.1.3. Thermodynamic Modeling
     7.1.4. Computational Models
      7.1.4.1. Bond Distance and Bond Angle
      7.1.4.2. Multiple Silicate Species
      7.1.4.3. Simulation of High-Pressure Structure
    7.2. Direct Determination
     7.2.1. Silicate Network
     7.2.2. Network-Modifiers and Interconnectivity
     7.2.3. Temperature and Pressure
      7.2.3.1. Temperature
      7.2.3.2. Pressure
    7.3. Structure and Melt Properties
     7.3.1. Thermal Properties
      7.3.1.1. Liquidus Surfaces
      7.3.1.2. Mixing
      7.3.1.3. Mixed Alkali Effect
     7.3.2. Physical Properties
      7.3.2.1. Volume Properties
      7.3.2.2. Transport Properties

    Chapter 8 Properties of Aluminosilicate Systems
    Abstract
    Introductory Comments
    8.1 Phase Relationships
     8.1.1. Liquidus Relations
     8.1.2. Energetics, Phase Stability, and Immiscibility
     8.1.3. Glass Formation
    8.2. Thermal Properties
     8.2.1. Thermodynamics of Melting
     8.2.2. Activity-Composition Relations
     8.2.3. Energetics of Mixing
     8.2.4. Heat Capacity
    8.3. Physical Properties
     8.3.1. Transport Properties
      8.3.1.1. Viscosity
      8.3.1.2. Diffusion
     8.3.2. Volume, Expansion, and Compressibility
      8.3.2.1. Volume and Thermal Expansion
      8.3.2.2. Pressure and Compressibility

    Chapter 9 – Structure of Aluminosilicate Glass and Melt
    Abstract
    Introductory Comments
    9.1. Numerical Simulation of Structure
     9.1.1. Compositions without Charge-Balance
      9.1.1.1. Al2O3 Simulations
      9.1.1.2. Al2O3-SiO2 Simulations
     9.1.2. Compositions with Charge-Balanced Al3+
      9.1.2.1. Mn+2/nO–Al2O3  Simulations
      9.1.2.2. SiO2-Mn+n/2O-Mn+-AlnO2n Simulations
    9.2. Direct Determination
     9.2.1. Aluminate and Aluminosilicate with Al3+ Charge-Balance
      9.2.1.1. Al2O3 Data
      9.2.1.2. Al2O3-SiO2 Data
     9.2.2. Charge-Balanced Al3+
      9.2.2.1. Modifier Cation Data
      9.2.2.2. Mn+2/nO–Al2O3 Data
      9.2.2.3. Meta-Aluminosilicate Compositions
      9.2.2.4. Peralkaline and Peraluminous Compositions
    9.3. Temperature and Pressure
     9.3.1. Temperature
     9.3.2. Pressure
    9.4. Structure and Properties of Aluminosilicate Melts
     9.4.1. Thermal Properties
     9.4.2. Physical Properties
      9.4.2.1. Transport Properties
      9.4.2.2. Volume Properties

    Chapter 10 - Properties of Iron-Silicate Glasses and Melts
    Abstract
    Introductory Comments
    10.1. Ferrous and Ferric Iron
     10.1.1. Redox States
     10.1.2. Oxygen Fugacity
     10.1.3. Analysis of Redox Ratio
    10.2. Phase Equilibria
     10.2.1. Ferrosilicate Phase Relations
     10.2.2. Ferrisilicate Phase Relations
     10.2.3. Phase Relations in Complex Systems
    10.3. Iron Redox Reactions
     10.3.1. Temperature and Oxygen Fugacity
     10.3.2. Temperature and Pressure
     10.3.3. Oxygen Activity and Glass Basicity
     10.3.4. Composition and Redox State
     10.3.5. Water and Minor Components
     10.3.6. Prediction of Iron Redox Ratio
     10.3.7. Mechanisms of Redox Reactions
     10.3.8. Kinetics of Redox Reactions
    10.4. Thermal Properties
     10.4.1. Thermodynamics of Melting
     10.4.2. Activity-Composition Relations
     10.4.3. Enthalpy of Mixing
     10.4.4. Heat Capacity
    10.5. Other Physical Properties
     10.5.1. Density
     10.5.2. Transport Properties
      10.5.2.1. Transport Properties
      10.5.2.2. Diffusion

    Chapter 11 – Structure of Iron-Silicate Glasses and Melts
    Abstract
    Introductory Comments
    11.1. Fe3+ Distribution in Ferrisilicate Systems
     11.1.1. Ferric Iron Bond Length and Oxygen Coordination
     11.1.2. Fe3+ Distribution versus Clustering
    11.2. Fe2+ in Silicate Systems
     11.2.1. Ferrous Iron Bond Length and Oxygen Coordination
    11.3. Mixed Valence States
     11.3.1. Redox Ratio and Oxygen Coordination
     11.3.2. Iron-Silicate Interaction
     11.3.3. Temperature and Pressure
      11.3.3.1. Temperature
      11.3.3.2. Pressure
    11.4. Structure and Melt Properties
     11.4.1. Thermal Properties
      11.4.1.1. Configurational Properties
     11.4.2. Physical Properties
      11.4.2.1. Transport Properties
      11.4.2.2. Volume Properties

    Chapter 12 – Titanium-Bearing Systems
    Abstract
    Introductory Comments
    12.1. Titanium Redox Reactions
    12.2. Melting Relations
     12.2.1. Liquidus Relations in Binary, Ternary and more Complex Systems
      12.2.1.1. TiO2-SiO2
      12.2.1.2. TiO2-Al2O3-SiO2
      12.2.1.3. Mn+n/2-TiO2-SiO2
      12.2.1.4. Multicomponent Systems
     12.2.2. Titanium Solubility in Silicate Melts and Glasses
    12.3. Thermal Properties
     12.3.1. Activity-Composition Relations
     12.3.2. Enthalpy, Entropy, and Heat Capacity
    12.4. Physical Properties
     12.4.1. Transport Properties
     12.4.2. Volume, Expansion, and Compressibility
      12.4.2.1. Molar Volume
      12.4.2.2. Expansion and Compressibility
    12.5 Structure
     12.5.1. Oxygen Coordination, Ti4+ Concentration, and Composition
      12.5.1.1. TiO2
      12.5.1.2. TiO2-SiO2
      12.5.1.3. Ti-bearing Multicomponent Glasses and Melts
     12.5.2. (Ti, Si) Substitution versus Ti Clustering
     12.5.3. Temperature and Pressure
    12.6. Structure and Properties of Ti-bearing Melts
     12.6.1. Thermal Properties
     12.6.2. Physical Properties

    Chapter 13 – Phosphorus in Silicate Systems
    Abstract
    Introductory Comments
    13.1. Properties of Phosphorus-bearing Glasses and Melts
     13.1.1. Phase Relations
      13.1.1.1. Melting Relations in Chemically Simple Systems
      13.1.1.2. Melting Relations in Chemically Complex Systems
      13.1.1.3. Phosphorus Solubility in Silicate Glasses and Melts
     13.1.2. Thermal Properties
     13.1.3. Physical Properties
      13.1.3.1. Transport Properties
      13.1.3.2. Density, Volume, Compressibility and Expansion
    13.2. Structure of Phosphorus-bearing Glasses and Melts
     13.2.1. Oxygen Coordination, P5+ Concentration, and Composition
      13.2.1.1. P2O5
      13.2.1.2. Binary Phosphate Systems
      13.2.1.3. Phosphosilicate Glasses and Melts
      13.2.1.4. Phosphate in Metal Oxide-Alumina-Silica Systems
      13.2.1.5. P5+ in Higher Coordination States
     13.2.2. (P, Si) Substitution versus P Clustering
     13.2.3. Structure and Temperature
    13.3. Structure and Properties
     13.3.1. Thermal Properties
     13.3.2. Physical Properties

    Chapter 14 - Properties of Hydrous Melt and Glass
    Abstract
    Introductory Comments
    14.1 Phase Relations
     14.1.1. Melting and Crystallization
     14.1.2. Silicate-H2O Miscibility
     14.1.3. Water Solubility
      14.1.3.1. SiO2-H2O
      14.1.3.2. Metal Oxide-SiO2-H2O
      14.1.3.3. Aluminosilicate-H2O
     14.1.4. Water Solubility and Mixed Volatiles
    14.2. Thermodynamic Properties
     14.2.1. Activity-Composition Relations
     14.2.2. Heat Capacity and Enthalpy
    14.3 Other Physical Properties
     14.3.1. Transport Properties
      14.3.1.1. Viscosity
      14.3.1.2. Diffusivity
      14.3.1.3. Conductivity
     14.3.2. Volume, Compressibility, and Expansion
      14.3.2.1. Density and Volume
      14.3.2.2. Compressibility

    Chapter 15 - Water Solution Mechanisms and Structure
    Abstract
    Introductory Comments
    15.1. Water Speciation
     15.1.1. Composition, Temperature, and Pressure
    15.2. Hydrous Melt and Glass Structure
     15.2.1. SiO2-H2O
     15.2.2. Metal Oxide-Silica-H2O
     15.2.3. Aluminosilicate-H2O
     15.2.4. H2O and Other Oxide Components
    15.3. Structure and Properties
     15.3.1. Transport Properties and Structure
     15.3.2. Volume Properties and Structure
     15.3.3. Crystallization, Melting, and Structure
     15.3.4. Water Solubility, Solution Mechanisms, and Structure

    Chapter 16 – Reactive Silicate-C-O-H-N-S Systems
    Abstract
    Introductory Comments
    16.1. Concepts
    16.2. Carbon in C-O-H Systems
     16.2.1. Solubility and Solution Mechanisms of Oxidized Carbon
      16.2.1.1. Carbon Dioxide
     16.2.2. Solubility and Solution Mechanisms of Reduced Carbon
      16.2.2.1. Carbon Monoxide (CO)
      16.2.2.2. Carbide
      16.2.2.3. Methane (CH4)
     16.2.3. Properties and Solution Mechanisms in (C-O-H) Systems
      16.2.3.1. Thermal Properties
      16.2.3.2. Transport Properties
      16.2.3.3. Volume Properties
    16.3. Sulfur in S-O-H Systems
     16.3.1. Solubility and Solution Mechanisms of Oxidized Sulfur
     16.3.2. Solubility and Solution Mechanisms of Reduced Sulfur
     16.3.3. Properties and Solution Mechanisms in (S-O-H) Systems
      16.3.3.1. Thermal Properties
      16.3.3.2. Transport Properties
    16.4. Nitrogen in N-O-H Systems
     16.4.1. Solubility and Solution Mechanisms of Reduced Nitrogen
     16.4.2. Oxynitride and Nitrosyl Substitution
      16.4.2.1. Nitrosyl Groups
      16.4.2.2. Oxynitride
     16.4.3. Properties and Solution Mechanisms in (N-O-H) Systems

    Chapter 17 – Noble Gases, Molecular, Species, Hydrogen, and Halogens
    Abstract
    Introductory Comments
    17.1. Noble Gases
     17.1.1. General Remarks
      17.1.2.1. Glasses and Melts along Silica - Meta-Aluminate Joins (SiO2-Mx+1/xAlO2)
      17.1.2.2. Peralkaline and Depolymerized Glasses and Melts
    17.2. Molecular Species
     17.2.1. Solubility and Solution Mechanisms
      17.2.1.1. Nitrogen (N2)
      17.2.1.2. Hydrogen (H2)
    17.3. Halogens
     17.3.1. Fluorine
      17.3.1.1. Solubility
      17.3.1.1. Solution Mechanisms
     17.3.2. Chlorine
      17.3.2.1. Solubility
      17.3.2.2. Solution Mechanisms
      17.3.2.3. Other Halogens
     17.3.3. Properties and Solution Mechanisms
      17.3.3.1. Liquidus Phase Relations
      17.3.3.2. Transport Properties

    Chapter 18 – Chemically Complex Melts and Natural Magma
    Abstract
    Introductory Comments
    18.1. Structure
     18.1.1. Degree of Polymerization, Network Formers, and Network Modifiers
     18.1.2. Qn-Species in Complex Systems
    18.2. Properties
     18.2.1. Chemical Properties
      18.2.1.1. Melting and Crystallization
      18.2.1.2. Crystal/Liquid Equilibria
      18.2.1.3. Redox Relations of Iron
      18.2.1.4. Volatiles in Magmatic Liquids
       18.2.1.4.1. Water
       18.2.1.4.2. Mixed H2O-CO2
       18.2.1.4.3. Sulfur
     18.2.2. Physical Properties
      18.2.2.1. Volume Properties
      18.2.2.2. Transport Properties.
       9.2.2.2.1. Viscosity, Pressure, and Temperature
       9.2.2.2.2. Viscosity and Water

     

Product details

  • No. of pages: 720
  • Language: English
  • Copyright: © Elsevier Science 2018
  • Published: November 27, 2018
  • Imprint: Elsevier Science
  • eBook ISBN: 9780444637093
  • Paperback ISBN: 9780444637086

About the Authors

B. Mysen

Bjorn O. Mysen. Ph.D., Senior Scientist, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., Editor, Proceedings in Earth and Planetary Science, General Editor, Phase Diagrams for Ceramists (American Ceramic Society), Associate Editor, Geochimica et Cosmochimica Acta and American Mineralogist, Highly-cited scientist, Thompson ISI, 2001-present

Affiliations and Expertise

Senior Scientist, Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, USA

P. Richet

Pascal Richet, Ph.D., Physicist, Institut de Physique du Globe Paris, France, Highly-cited scientist, Thompson ISI, 2003

Affiliations and Expertise

Physicist, Institut de Physique du Globe de Paris, France

Ratings and Reviews

Write a review

Latest reviews

(Total rating for all reviews)

  • LHTURNER Thu Sep 12 2019

    Silicate Glasses and Melts

    Only part way through; has more data than the earlier edition which was my “go to” textbook for explaining silicate glass and glazes. So far the book retains that “go to” status.