
Salinity Gradient Heat Engines
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
- Introduction to salinity gradients and salinity gradient heat engines
2. State of the art of conventional and nonconventional heat engines
3. Osmotic Heat Engines (OHE)
4. Reverse Electrodialysis Heat Engine (REDHE)
5. Solvent Extraction Regeneration Technologies
6. Salt Extraction Regeneration Technologies
7. Coupling Salinity Gradients Heat Engines with power generation systems
8. Special engines
9. Environmental aspects, process performance analysis and economics of SGHE
Description
Salinity Gradient Heat Engines classifies all the existing SGHEs and presents an in-depth analysis of their fundamentals, applications and perspectives. The main SGHEs analyzed in this publication are Osmotic, the Reverse Electrodialysis, and the Accumulator Mixing Heat Engines. The production and regeneration unit of both cycles are described and analyzed alongside the related economic and environmental aspects. This approach provides the reader with very thorough knowledge on how these technologies can be developed and implemented as a low-impact power generation technique, wherever low-temperature waste-heat is available.
This book will also be a very beneficial resource for academic researchers and graduate students across various disciplines, including energy engineering, chemical engineering, chemistry, physics, electrical and mechanical engineering.
Key Features
- Classifies an innovative set of SGHE technologies from the latest scientific research papers
- Considers the economic and environmental aspects of each novel technology presented
- Focuses on advanced technologies of waste-heat recovery in a very practical way
Readership
Engineers, professionals and researchers in fields of energy production, energy efficiency and sustainability; innovators within the industrial sector involved in processes where low-temperature waste heat is available; R&D managers in industry; academic researchers, graduate students in energy, but also chemical engineering, chemistry, physics, electrical and mechanical engineering disciplines
Details
- No. of pages:
- 300
- Language:
- English
- Copyright:
- © Woodhead Publishing 2022
- Published:
- 1st September 2021
- Imprint:
- Woodhead Publishing
- Paperback ISBN:
- 9780081028476
Ratings and Reviews
About the Editors
Alessandro Tamburini
Dr. Alessandro Tamburini is Assistant Professor in Conceptual Design of Chemical Processes at Università degli Studi di Palermo. He received his PhD in 2011 in Nuclear, Chemical and Safety Technologies at the same university. His research is focused on the experimental and numerical analysis of complex systems including multiphase stirred tanks and membrane-based units. He has published more than 70 works as journal papers or conference contributions in this area. He has been authors of some book chapters. His main expertise are in fields of fluid dynamics studies involving the adoption of innovative image analysis techniques and advanced computational fluid dynamics methodologies to predict mass and heat transfer in complex systems. He has participated in many EU-funded and national projects on water desalination and renewable energy technologies as well as Salinity Gradient Power processes. He was awarded with the Senior Moulton Medal 2013 by the Board of Institution of Chemical Engineering (UK).
Affiliations and Expertise
Assistant Professor in Conceptual Design of Chemical Processes, Universita degli Studi di Palermo, Italy
Andrea Cipollina
Dr. Andrea Cipollina is Senior Assistant Professor of Conceptual Design of Chemical Processes. He is heavily involved in research activities on water desalination and renewable energy technologies as well as Salinity Gradient Power processes, with a particular focus on Computer Aided Process modelling and optimisation, fluid flow characterization and prototype design, commissioning and operation applied to desalination and membranes-based SGP technologies. He has published more than 100 works as journal papers or conference contributions in the field of desalination, SGP technologies and membrane separation. He was awarded with the Senior Moulton Medal 2013 by the Institution of Chemical Engineers (UK). He is the editor of Sustainable Energy from Salinity Gradient, Woodhead Publishing, 2016.
Affiliations and Expertise
Senior Assistant Professor, Universita degli Studi di Palermo, Italy
Giorgio Micale
Dr Giorgio Micale is a Professor of Conceptual Design of Chemical Processes. His core research topics are the study of Conventional and Renewable Energy Desalination processes, Salinity Gradient Power processes, Computational Fluid Dynamics, Mixing and Multiphase Flows, Computer Aided Process Engineering. He currently leads the University of Palermo team within the RED Heat-to-Power, REvivED, ReWaCEM, BAoBAB and ZERO BRINE H2020 projects building-up significant expertise in the area of electro-membrane processes, desalination and salinity gradient power technologies and brine valorisation processes. He has published more than 100 works as journal papers or conference contributions in the field of desalination, SGP technologies and membrane separation. He was awarded with the Senior Moulton Medal 2013 by the Institution of Chemical Engineers (UK). He was a member of the Board of Directors of the European Desalination Society during the years 2012-2017. He is the editor of Sustainable Energy from Salinity Gradient, Woodhead Publishing, 2016.
Affiliations and Expertise
Professor, Universita degli Studi di Palermo Italy
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.