Salinity Gradient Heat Engines - 1st Edition - ISBN: 9780081028476

Salinity Gradient Heat Engines

1st Edition

Editors: Alessandro Tamburini Andrea Cipollina Giorgio Micale
Paperback ISBN: 9780081028476
Imprint: Woodhead Publishing
Published Date: 1st August 2020
Page Count: 300
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  1. Introduction to salinity gradients and salinity gradients heat engines
    2. State of the art of conventional and non conventional heat engines
    3. Osmotic Heat Engines (OHE)
    4. Reverse Electrodialysis Heat Engine (REDHE)
    5. Solvent Extraction Regeneration Technologies
    6. Salt Extraction Regeneration Technologies
    7. Coupling Salinity Gradients Heat Engines with power generation systems
    8. Special engines
    9. Environmental aspects, process performance analysis and economics of SGHE

Description

Salinity Gradient Heat Engines edited by Dr. Tamburini, Dr. Cipollina and Dr. Micale classifies all the existing SGHEs and presents an in-depth analysis of fundamentals, applications and perspectives on each. The main SGHEs analysed in this publication are Osmotic, the Reverse Electrodialysis and the Accumulator Mixing Heat Engines. The production and regeneration unit of both cycles are described and analysed alongside the related economic and environmental aspects. This approach provides the reader with very thorough knowledge on how these technologies can be developed and implemented as a low-impact power generation technique, wherever low-temperature waste-heat is available.

This book is a unique reference for all industry professionals aiming to solve the problem of recovering low-grade heat, and the development of innovative technologies for power generation. It is also an important reference for all those involved in energy efficiency and sustainability, as it provides a more accessible resource for those without particularly high-levels of technological knowledge on related components of SGHEs such as desalination, thermolytic salts and membranes etc. It will also be a very beneficial resource for academic researchers and graduate students across various disciplines including energy engineering, chemical engineering, chemistry, physics, electrical and mechanical engineering.

Key Features

  • Classifies an innovative set of SGHE technologies from the latest scientific research papers in a dedicated chapter each, discussing fundamentals, advances and potential perspectives 
  • Considers economics and environmental aspects of each novel technology presented
  • Focuses on advanced technologies of waste-heat recovery in a very practical way to ensure readers acquire thorough knowledge which can be transferred and implemented into various settings

Readership

Engineers, professionals and researchers in fields of energy production, energy efficiency and sustainability; innovators within the industrial sector involved in processes where low-temperature waste heat is available; R&D managers in industry; academic researchers, graduate students in energy, but also chemical engineering, chemistry, physics, electrical and mechanical engineering disciples


Details

No. of pages:
300
Language:
English
Copyright:
© Woodhead Publishing 2020
Published:
1st August 2020
Imprint:
Woodhead Publishing
Paperback ISBN:
9780081028476

Ratings and Reviews


About the Editors

Alessandro Tamburini Editor

Dr. Alessandro Tamburini is Assistant Professor in Conceptual Design of Chemical Processes at Università degli Studi di Palermo. He received his PhD in 2011 in Nuclear, Chemical and Safety Technologies at the same university. His research is focused on the experimental and numerical analysis of complex systems including multiphase stirred tanks and membrane-based units. He has published more than 70 works as journal papers or conference contributions in this area. He has been authors of some book chapters. His main expertise are in fields of fluid dynamics studies involving the adoption of innovative image analysis techniques and advanced computational fluid dynamics methodologies to predict mass and heat transfer in complex systems. He has participated in many EU-funded and national projects on water desalination and renewable energy technologies as well as Salinity Gradient Power processes. He was awarded with the Senior Moulton Medal 2013 by the Board of Institution of Chemical Engineering (UK).

Affiliations and Expertise

Assistant Professor, Universita degli Studi di Palermo, Italy

Andrea Cipollina Editor

Dr. Andrea Cipollina is Senior Assistant Professor of Conceptual Design of Chemical Processes. He is heavily involved in research activities on water desalination and renewable energy technologies as well as Salinity Gradient Power processes, with a particular focus on Computer Aided Process modelling and optimisation, fluid flow characterization and prototype design, commissioning and operation applied to desalination and membranes-based SGP technologies. He has published more than 100 works as journal papers or conference contributions in the field of desalination, SGP technologies and membrane separation. He was awarded with the Senior Moulton Medal 2013 by the Institution of Chemical Engineers (UK). He is the editor of Sustainable Energy from Salinity Gradient, Woodhead Publishing, 2016.

Affiliations and Expertise

Senior Assistant Professor, Universita degli Studi di Palermo, Italy

Giorgio Micale Editor

Dr Giorgio Micale is a Professor of Conceptual Design of Chemical Processes. His core research topics are the study of Conventional and Renewable Energy Desalination processes, Salinity Gradient Power processes, Computational Fluid Dynamics, Mixing and Multiphase Flows, Computer Aided Process Engineering. He currently leads the University of Palermo team within the RED Heat-to-Power, REvivED, ReWaCEM, BAoBAB and ZERO BRINE H2020 projects building-up significant expertise in the area of electro-membrane processes, desalination and salinity gradient power technologies and brine valorisation processes. He has published more than 100 works as journal papers or conference contributions in the field of desalination, SGP technologies and membrane separation. He was awarded with the Senior Moulton Medal 2013 by the Institution of Chemical Engineers (UK). He was a member of the Board of Directors of the European Desalination Society during the years 2012-2017. He is the editor of Sustainable Energy from Salinity Gradient, Woodhead Publishing, 2016.

Affiliations and Expertise

Professor, Universita degli Studi di Palermo Italy