Rehabilitation Robotics - 1st Edition - ISBN: 9780128119952, 9780128119969

Rehabilitation Robotics

1st Edition

Technology and Application

Editors: Roberto Colombo Vittorio Sanguineti
eBook ISBN: 9780128119969
Paperback ISBN: 9780128119952
Imprint: Academic Press
Published Date: 10th March 2018
Page Count: 382
Sales tax will be calculated at check-out Price includes VAT/GST
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
15% off
171.77
146.00
146.00
146.00
146.00
146.00
126.00
107.10
107.10
107.10
107.10
107.10
160.00
136.00
136.00
136.00
136.00
136.00
147.00
124.95
124.95
124.95
124.95
124.95
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic.

Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics.

Key Features

  • Provides a comprehensive review of recent developments in the area of rehabilitation robotics
  • Includes information on both therapeutic and assistive robots
  • Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems

Readership

Biomedical Engineers, Clinical Engineers, R&D Professionals, Rehabilitation Engineers and Scientists, Physical and Occupational Therapists, Neurologists, Clinicians and Psychiatrists

Table of Contents

1. Physiological basis of neuromotor recovery
2. An overall framework for neurorehabilitation robotics: implications for recovery
3. Biomechatronic design criteria of systems for robot-mediated rehabilitation therapy
4. Actuators and sensors for rehabilitation and prosthetic robots
5. Assistive controllers and modalities for robot-aided neurorehabilitation
6. Exoskeletons for upper limb rehabilitation
7. Exoskeletons for lower limb rehabilitation
8. Performance measures in robot-assisted assessment of sensorimotor functions
9. Computational models of the recovery process in robot-assisted training
10. Control of rehabilitation robots: from guidance to interaction
11. Promoting motivation during robot-assisted rehabilitation
12. Software platforms for integrating robots and virtual environments
13. Twenty+ Years of Robotics for Upper Extremity Rehabilitation following a Stroke
14. Three-dimensional, task-specific robot therapy
15. Robot-assisted therapy of hand function
16. Robot-assisted gait training
17. Wearable robotic applications for neurorehabilitation
18. Robot–assisted rehabilitation in multiple sclerosis
19. Robots for cognitive rehabilitation and symptom management
20. Hybrid NMES-robot devices for training of activities of daily living
21. Robotic techniques for evaluation and training of proprioceptive deficits
22. Psychophysiological responses during robot-assisted rehabilitation
23. The role of muscle synergies in robot-assisted neurorehabilitation
24. Telerehabilitation Robotics

Details

No. of pages:
382
Language:
English
Copyright:
© Academic Press 2018
Published:
Imprint:
Academic Press
eBook ISBN:
9780128119969
Paperback ISBN:
9780128119952

About the Editor

Roberto Colombo

He has been involved in several activities in the field of Bioengineering and Clinical Engineering including biological data acquisition, instrumentation management and interfacing, signal and image processing, data mining and statistics. He is a teacher in several national and international courses in the field of neurorehabilitation

His research interests include: robot-aided neuro-rehabilitation, muscle tone and spasticity evaluation, muscle force and fatigue assessment, speech production mechanisms study, respiratory mechanics assessment, assessment of autonomic function through heart rate variability analysis., He has authored over 100 papers and is co-editor of a book on the subject of speech production mechanisms.

Affiliations and Expertise

Bioengineering Dept., Fondazione Salvatore Maugeri – Pavia, Italy

Vittorio Sanguineti

Vittorio Sanguineti, PhD, is an Associate Professor of Biomedical Engineering at the University of Genoa. He received a Master's degree in Electronic Engineering (1989) and a PhD in Robotics (1994), both at the University of Genoa.

He Has Been working as a post-doctoral fellow at Institut National Polytechnique de Grenoble, France (1995-1996), at McGill University, Montreal, Canada (1996), and at Northwestern University Medical School, Chicago, USA (1997-1998 and 2000 ).

His main areas of interest are the neural control of movement (upper limb, orofacial and postural control), motor learning and the applications of robotics to neuromotor rehabilitation.

Affiliations and Expertise

Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova – Genoa, Italy

Ratings and Reviews