Realizability, Volume 152
1st Edition
An Introduction to its Categorical Side
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Introduction
- Partial Combinatory Algebras
- Realizability triposes and toposes
- The effective topos
- Variations on Realizability
Description
Aimed at starting researchers in the field, Realizability gives a rigorous, yet reasonable introduction to the basic concepts of a field which has passed several successive phases of abstraction. Material from previously unpublished sources such as Ph.D. theses, unpublished papers, etc. has been molded into one comprehensive presentation of the subject area.
Key Features
- The first book to date on this subject area
- Provides an clear introduction to Realizability with a comprehensive bibliography
- Easy to read and mathematically rigorous
- Written by an expert in the field
Readership
University libraries, PhD students and advanced undergraduates as well as professional logicians
Details
- No. of pages:
- 328
- Language:
- English
- Copyright:
- © Elsevier Science 2008
- Published:
- 6th March 2008
- Imprint:
- Elsevier Science
- Hardcover ISBN:
- 9780444515841
- eBook ISBN:
- 9780080560069
Reviews
"This book aims at beginning researchers in the field of realizability and so emphasizes technical tools rather than any overview of methods or results. The central object here which created the categorical approach to realizability is Martin Hyland’s effective topos called Eff. The author advises that readers interested in getting directly to that topos can skip Chapter 1 and will only need "some parts of Chapter 2" (p. xii). However, that opening material will be needed for any research career on this and other realizability toposes. The reader is assumed to know some amount of general category theory as well as to have an "acquaintance with the notion of a topos" (p. vi). The tools are presented very clearly and this is especially advantageous for the idea of a tripos. The standard reference on triposes has been Andrew Pitts’s 1982 Ph.D. dissertation [The theory of triposes. Cambridge: Univ. Cambridge (1982)]. Considerable simplification has been possible since that pioneering work. This book gives a very clear exposition and should become the reference."--Zentralblatt MATH 1225-1
Ratings and Reviews
About the Author
Jaap van Oosten
Affiliations and Expertise
Utrecht University, The Netherlands
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.