Reactor and Process Design in Sustainable Energy Technology - 1st Edition - ISBN: 9780444595669, 9780444595782

Reactor and Process Design in Sustainable Energy Technology

1st Edition

Editors: Fan Shi
eBook ISBN: 9780444595782
Hardcover ISBN: 9780444595669
Paperback ISBN: 9780444638342
Imprint: Elsevier
Published Date: 1st August 2014
Page Count: 290
Tax/VAT will be calculated at check-out Price includes VAT (GST)
20% off
20% off
20% off
95.00
76.00
118.00
94.40
155.00
124.00
Unavailable
Price includes VAT (GST)
DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Reactor Process Design in Sustainable Energy Technology compiles and explains current developments in reactor and process design in sustainable energy technologies, including optimization and scale-up methodologies and numerical methods. Sustainable energy technologies that require more efficient means of converting and utilizing energy can help provide for burgeoning global energy demand while reducing anthropogenic carbon dioxide emissions associated with energy production.

The book, contributed by an international team of academic and industry experts in the field, brings numerous reactor design cases to readers based on their valuable experience from lab R&D scale to industry levels. It is the first to emphasize reactor engineering in sustainable energy technology discussing design. It provides comprehensive tools and information to help engineers and energy professionals learn, design, and specify chemical reactors and processes confidently.

Key Features

  • Emphasis on reactor engineering in sustainable energy technology
  • Up-to-date overview of the latest reaction engineering techniques in sustainable energy topics
  • Expert accounts of reactor types, processing, and optimization
  • Figures and tables designed to comprehensively present concepts and procedures
    Hundreds of citations drawing on many most recent and previously published works on the subject

Readership

This book will be a powerful resource for chemical, process, or plant engineers who need to select, design, or configure an efficient sustainable energy power plant. In addition, the book could be a resource for government, industry, and nonprofit organizations researching the energy industry. This book could also be used as a textbook or supplemental text for graduate courses in reactor engineering in sustainable energy technology.

Table of Contents

  • Preface
  • Chapter 1: Reactor configurations and design parameters for thermochemical conversion of biomass into fuels, energy, and chemicals
    • Abstract
    • 1 Biofuels – basic definitions
    • 2 Thermochemical technologies
    • 3 Reactor configurations for fast pyrolysis
    • 4 Gasification – important concepts and definitions
    • 5 Gasification steps
    • 6 Applications for the gasification product
    • 7 Reactors for gasification
    • 8 Summary
  • Chapter 2: Bioreactor design for algal growth as a sustainable energy source
    • Abstract
    • Acknowledgment
    • 1 Introduction
    • 2 Bioreactor design
    • 3 Algal growth in bioreactors
    • 4 Modeling of algal growth
    • 5 Conclusions
  • Chapter 3: Design of flow battery
    • Abstract
    • 1 Overview of redox flow battery
    • 2 True redox flow batteries
    • 3 Hybrid redox flow batteries
    • 4 Design considerations of redox flow batteries
    • 5 Summary and perspectives
  • Chapter 4: Design and optimization principles of biogas reactors in large scale applications
    • Abstract
    • Acknowledgments
    • 1 Introduction
    • 2 Simple structured biogas reactors
    • 3 Enhanced bioreactors for large-scale applications
    • 4 Research progress in lab
    • 5 Conclusion
  • Chapter 5: Pd-Alloy membranes for hydrogen separation
    • Abstract
    • 1 Background
    • 2 The chemistry and physics of separation by dense metal membranes
    • 3 The permeability of single-component materials
    • 4 The roles of minor alloy component(s)
    • 5 Design and implementation of dense metal membrane systems
    • 6 Outlook
  • Chapter 6: Processes and simulations for solvent-based CO2 capture and syngas cleanup
    • Abstract
    • 1 Introduction
    • 2 Methyldiethanolamine
    • 3 Piperazine
    • 4 Monoethanolamine
    • 5 DGA, morpholine, and other amines
    • 6 Selexol
    • 7 Rectisol
    • 8 Conclusions
  • Chapter 7: Chemical-looping processes for fuel-flexible combustion and fuel production
    • Abstract
    • Acknowledgment
    • 1 Introduction
    • 2 Fuel composition and fuel flexibility
    • 3 Chemical-looping reforming
    • 4 Summary and outlook
  • Index

Details

No. of pages:
290
Language:
English
Copyright:
© Elsevier 2014
Published:
Imprint:
Elsevier
eBook ISBN:
9780444595782
Hardcover ISBN:
9780444595669
Paperback ISBN:
9780444638342

About the Editor

Fan Shi

Dr. Fan Shi, a researcher at the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), leads NETL-RUA projects on the novel membrane reactor for fuel conversion from coal/biomass and on CO2 capture technology. Shi authored and co-authored more than 15 technical papers on renewable energy production, and novel reactor design. He has chaired technical sessions focusing on reaction/reactor designs, gas to liquid (GTL) technologies, and modelling of composites for the American Institute of Chemical Engineers (AIChE) annual meetings. Shi has academic and industrial contacts worldwide in the reaction and process engineering arena, which will ease his coordination of a publication on this topic. He holds a Ph.D. in chemical engineering from the University of Pittsburgh and is a member of the American Chemical Society (ACS), AIChE, and North American Catalysis Society

Dr. Shi has chaired technical sessions focusing on reaction/reactor design, gas to liquid (GTL) technologies, and modelling of composites for the American Institute of Chemical Engineers (AIChE) annual meetings. He also served as coordinator for electronic proceedings and developed the abstract book for the World Filtration Congress (2004) and International Pittsburgh Coal Conference (1998-2004). Dr. Shi has academic and industrial contacts worldwide in the reaction and process engineering arena, which will ease his coordination of a publication on this topic. He holds a Ph.D. in chemical engineering from the University of Pittsburgh and is a member of the American Chemical Society (ACS), AIChE, and North American Catalysis Society..

Affiliations and Expertise

U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA