Rapid Prototyping of Biomaterials - 1st Edition - ISBN: 9780857095992, 9780857097217

Rapid Prototyping of Biomaterials

1st Edition

Principles and Applications

Editors: Roger Narayan
Hardcover ISBN: 9780857095992
eBook ISBN: 9780857097217
Imprint: Woodhead Publishing
Published Date: 11th December 2013
Page Count: 328
Tax/VAT will be calculated at check-out
230.00
140.00
175.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

  • Contributor contact details
  • Woodhead Publishing Series in Biomaterials
  • Introduction
  • Chapter 1: Introduction to rapid prototyping of biomaterials
    • Abstract:
    • 1.1 Introduction
    • 1.2 Definition of rapid prototyping (RP) systems
    • 1.3 Basic process
    • 1.4 Conventional RP systems and classification
    • 1.5 RP of biomaterials
    • 1.6 Conclusion and future trends
    • 1.7 Sources of further information and advice
  • Chapter 2: Freeform fabrication of nanobiomaterials using 3D printing
    • Abstract:
    • 2.1 Introduction
    • 2.2 Laser-based solid freeform fabrication (SFF) techniques
    • 2.3 Droplet-based SFF techniques
    • 2.4 Nozzle-based SFF techniques
    • 2.5 Extrusion freeforming of biomaterials scaffold
    • 2.6 Dry powder printing
    • 2.7 Conclusion
  • Chapter 3: Rapid prototyping techniques for the fabrication of biosensors
    • Abstract:
    • 3.1 Introduction
    • 3.2 Rapid prototyping (RP) of microfluidic systems
    • 3.3 Functionalization
    • 3.4 Biomaterials compatibility
    • 3.5 Conclusion and future trends
    • 3.6 Sources of further information and advice
  • Chapter 4: Rapid prototyping technologies for tissue regeneration
    • Abstract:
    • 4.1 Introduction
    • 4.2 Rapid prototyping (RP) technologies in tissue regeneration
    • 4.3 Laser-assisted techniques
    • 4.4 Extrusion-based techniques
    • 4.5 Inkjet printing (IP)
    • 4.6 Conclusion
  • Chapter 5: Rapid prototyping of complex tissues with laser assisted bioprinting (LAB)
    • Abstract:
    • 5.1 Introduction
    • 5.2 Rationale for using laser assisted bioprinting (LAB) in tissue engineering
    • 5.3 Terms of reference for LAB
    • 5.4 LAB parameters for cell printing
    • 5.5 High resolution and high throughput needs and limits
    • 5.6 Applications of LAB
    • 5.7 Conclusion
    • 5.8 Acknowledgements
  • Chapter 6: Scaffolding hydrogels for rapid prototyping based tissue engineering
    • Abstract:
    • 6.1 Introduction
    • 6.2 Biomaterials in tissue engineering
    • 6.3 Review of commonly used hydrogel-forming scaffolding biomaterials
    • 6.4 Applications of scaffolding hydrogels
    • 6.5 Conclusion
  • Chapter 7: Bioprinting for constructing microvascular systems for organs
    • Abstract:
    • 7.1 Introduction
    • 7.2 Biomimetic model for microvasculature printing
    • 7.3 The bio-blueprint for microvasculature printing
    • 7.4 Microvasculature printing strategies
    • 7.5 Microvasculature post-printing stage
    • 7.6 Future trends
    • 7.7 Acknowledgements
  • Chapter 8: Feasibility of 3D scaffolds for organs
    • Abstract:
    • 8.1 Introduction
    • 8.2 Overview of organ fabrication
    • 8.3 The right place: physical properties of the scaffold
    • 8.4 The right time: temporal expectations on the scaffold
    • 8.5 The right biomaterials: scaffold fabrication effects on non-scaffold components
    • 8.6 The right characteristics: material types
    • 8.7 The right process: biofabrication
    • 8.8 Conclusion
    • 8.9 Sources of further information and advice
  • Chapter 9: 3-D organ printing technologies for tissue engineering applications
    • Abstract:
    • 9.1 Introduction
    • 9.2 Three-dimensional printing methods for organ printing
    • 9.3 From medical imaging to organ printing
    • 9.4 Applications in tissue engineering and regenerative medicine
    • 9.5 Future trends
    • 9.6 Conclusion
  • Chapter 10: Rapid prototyping technology for bone regeneration
    • Abstract:
    • 10.1 Introduction
    • 10.2 Bone: properties, structure, and modeling
    • 10.3 Engineering of bone tissue
    • 10.4 Conventional scaffolds for bone regeneration
    • 10.5 Cell printing technology for bone regeneration
    • 10.6 Future trends
    • 10.7 Conclusion
    • 10.8 Acknowledgement
  • Chapter 11: Additive manufacturing of a prosthetic limb
    • Abstract:
    • 11.1 Introduction
    • 11.2 The aim in designing a prosthetic limb
    • 11.3 A biomimetic approach to design
    • 11.4 Integrating functionality
    • 11.5 A ‘greener’ approach to design
    • 11.6 Tactile dividends of additively manufactured parts
    • 11.7 Vast design flexibility
    • 11.8 Conclusion
  • Index

Description

  • Contributor contact details
  • Woodhead Publishing Series in Biomaterials
  • Introduction
  • Chapter 1: Introduction to rapid prototyping of biomaterials
    • Abstract:
    • 1.1 Introduction
    • 1.2 Definition of rapid prototyping (RP) systems
    • 1.3 Basic process
    • 1.4 Conventional RP systems and classification
    • 1.5 RP of biomaterials
    • 1.6 Conclusion and future trends
    • 1.7 Sources of further information and advice
  • Chapter 2: Freeform fabrication of nanobiomaterials using 3D printing
    • Abstract:
    • 2.1 Introduction
    • 2.2 Laser-based solid freeform fabrication (SFF) techniques
    • 2.3 Droplet-based SFF techniques
    • 2.4 Nozzle-based SFF techniques
    • 2.5 Extrusion freeforming of biomaterials scaffold
    • 2.6 Dry powder printing
    • 2.7 Conclusion
  • Chapter 3: Rapid prototyping techniques for the fabrication of biosensors
    • Abstract:
    • 3.1 Introduction
    • 3.2 Rapid prototyping (RP) of microfluidic systems
    • 3.3 Functionalization
    • 3.4 Biomaterials compatibility
    • 3.5 Conclusion and future trends
    • 3.6 Sources of further information and advice
  • Chapter 4: Rapid prototyping technologies for tissue regeneration
    • Abstract:
    • 4.1 Introduction
    • 4.2 Rapid prototyping (RP) technologies in tissue regeneration
    • 4.3 Laser-assisted techniques
    • 4.4 Extrusion-based techniques
    • 4.5 Inkjet printing (IP)
    • 4.6 Conclusion
  • Chapter 5: Rapid prototyping of complex tissues with laser assisted bioprinting (LAB)
    • Abstract:
    • 5.1 Introduction
    • 5.2 Rationale for using laser assisted bioprinting (LAB) in tissue engineering
    • 5.3 Terms of reference for LAB
    • 5.4 LAB parameters for cell printing
    • 5.5 High resolution and high throughput needs and limits
    • 5.6 Applications of LAB
    • 5.7 Conclusion
    • 5.8 Acknowledgements
  • Chapter 6: Scaffolding hydrogels for rapid prototyping based tissue engineering
    • Abstract:
    • 6.1 Introduction
    • 6.2 Biomaterials in tissue engineering
    • 6.3 Review of commonly used hydrogel-forming scaffolding biomaterials
    • 6.4 Applications of scaffolding hydrogels
    • 6.5 Conclusion
  • Chapter 7: Bioprinting for constructing microvascular systems for organs
    • Abstract:
    • 7.1 Introduction
    • 7.2 Biomimetic model for microvasculature printing
    • 7.3 The bio-blueprint for microvasculature printing
    • 7.4 Microvasculature printing strategies
    • 7.5 Microvasculature post-printing stage
    • 7.6 Future trends
    • 7.7 Acknowledgements
  • Chapter 8: Feasibility of 3D scaffolds for organs
    • Abstract:
    • 8.1 Introduction
    • 8.2 Overview of organ fabrication
    • 8.3 The right place: physical properties of the scaffold
    • 8.4 The right time: temporal expectations on the scaffold
    • 8.5 The right biomaterials: scaffold fabrication effects on non-scaffold components
    • 8.6 The right characteristics: material types
    • 8.7 The right process: biofabrication
    • 8.8 Conclusion
    • 8.9 Sources of further information and advice
  • Chapter 9: 3-D organ printing technologies for tissue engineering applications
    • Abstract:
    • 9.1 Introduction
    • 9.2 Three-dimensional printing methods for organ printing
    • 9.3 From medical imaging to organ printing
    • 9.4 Applications in tissue engineering and regenerative medicine
    • 9.5 Future trends
    • 9.6 Conclusion
  • Chapter 10: Rapid prototyping technology for bone regeneration
    • Abstract:
    • 10.1 Introduction
    • 10.2 Bone: properties, structure, and modeling
    • 10.3 Engineering of bone tissue
    • 10.4 Conventional scaffolds for bone regeneration
    • 10.5 Cell printing technology for bone regeneration
    • 10.6 Future trends
    • 10.7 Conclusion
    • 10.8 Acknowledgement
  • Chapter 11: Additive manufacturing of a prosthetic limb
    • Abstract:
    • 11.1 Introduction
    • 11.2 The aim in designing a prosthetic limb
    • 11.3 A biomimetic approach to design
    • 11.4 Integrating functionality
    • 11.5 A ‘greener’ approach to design
    • 11.6 Tactile dividends of additively manufactured parts
    • 11.7 Vast design flexibility
    • 11.8 Conclusion
  • Index

Key Features

  • Comprehensive review of established and emerging rapid prototyping technologies (such as bioprinting) for medical applications
  • Chapters explore rapid prototyping of nanoscale biomaterials, biosensors, artificial organs, and prosthetic limbs
  • Examines the use of rapid prototyping technologies for the processing of viable cells, scaffolds, and tissues

Readership

Academic and industry scientists working in the area of tissue engineering, regenerative medicine, advanced materials, and biofabrication based tissue regeneration strategies


Details

No. of pages:
328
Language:
English
Copyright:
© Woodhead Publishing 2014
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780857097217
Hardcover ISBN:
9780857095992

About the Editors

Roger Narayan Editor

Roger Narayan, M.D. Ph.D is a Professor in the Joint Department of Biomedical Engineering at the University of North Carolina and North Carolina State University, USA. He has authored over 100 articles on biomaterials, including on rapid prototyping of biomaterials, and is Fellow of ASM International, AAAS, and AIMBE.

Affiliations and Expertise

University of North Carolina, USA