COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Radiometric Temperature Measurements - 1st Edition - ISBN: 9780123740212, 9780080920627

Radiometric Temperature Measurements, Volume 42

1st Edition

I. Fundamentals

Series Volume Editors: Zhuomin Zhang Benjamin Tsai Graham Machin
Hardcover ISBN: 9780123740212
eBook ISBN: 9780080920627
Imprint: Academic Press
Published Date: 1st October 2009
Page Count: 376
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents


Glossary (Nomenclature)

1. Overview of Radiation Thermometry (Z.M. Zhang and G. Machin)

2. Temperature Fundamentals (G. Machin and B.K. Tsai)

3. Theory of Thermal Radiation and Radiative Properties (Z.M. Zhang and B.J. Lee)

4. Radiation Thermometer Designs (H.W. Yoon and G.P. Eppeldauer)

5. Calculation of Radiation Characteristics of Blackbody Radiation Sources (A.V. Prokhorov, L.M. Hanssen, and S.N. Mekhontsev)

6. Blackbody and other Calibration Sources (J. Hartmann, J. Hollandt, B. Khlevnoy, S. Morozova, S. Ogarev, and F. Sakuma)

7. Laser Optical and Photothermal Thermometry of Solids and Thin Films (Y. Liu and A. Mandelis)

Appendix A. Fundamental and Other Physical Constants



This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

The authors of each chapter were chosen from a group of international scientists who are experts in the field and specialists on the subject matter covered in the chapter. A large number of references are included at the end of each chapter as a resource for those seeking a deeper or more detailed understanding.

This book is more than a practice guide, readers will gain in-depth knowledge in:

(1) the proper selection of the type of thermometer;

(2) the best practice in using the radiation thermometers;

(3) awareness of the error sources and subsequent appropriate procedure to reduce the overall uncertainty; and

(4) understanding of the calibration chain and its current limitations.

Key Features

  • Covers all fundamental aspects of the radiometric measurements
  • Discusses practical applications with details on the instrumentation, calibration, and error sources
  • Authors are from leading national labs working in R&D of temperature measurements


Industrial practitioners in radiation thermometers; Scientific reseachers using thermometers; Designers of themometers


No. of pages:
© Academic Press 2009
1st October 2009
Academic Press
Hardcover ISBN:
eBook ISBN:


"This reviewer was impressed by the scope and depth of coverage afforded to this rapidly developing and very important class of measurement techniques. Non-contact temperature measurement has many applications, as it avoids contamination of the measured material, can handle extremely high temperatures, and can usually (but not always) be a nonintrusive measurement method. Many of the pitfalls common in application of radiation thermometry are pointed out in these volumes, and methods for avoiding the common errors in application are given. These volumes should be a part of the library of anyone using radiation thermometry in engineering applications."--International Journal of Thermophysics

Ratings and Reviews

About the Series Volume Editors

Zhuomin Zhang

Affiliations and Expertise

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

Benjamin Tsai

Benjamin K. Tsai graduated from Brigham Young University with a BSME degree in 1987. Next, he obtained a MSME degree in 1990 at Purdue University by completing his thesis on “Dual-wavelength Radiation Thermometry: Emissivity Compensation Algorithms.” In 1993 he finished a PhD degree at Purdue University with a dissertation entitled, “Macroscopic Spread Function Analysis for Subsurface Scattering in Semitransparent Materials.” Since that time, he has worked in the Sensor Science Division at the National Institute of Standards and Technology. His interests and projects have included development of a new irradiance scale, developing the ambient background infrared calibration laboratory, setting up high heat flux calibrations, making accurate temperature measurements in rapid thermal processing, modeling diffraction effects, performing low-temperature radiance temperature and spectrophotometric calibrations, evaluating skin reflectance, understanding ageing effects in ceramics, setting up a synchrotron beamline, and improving spectrophotometry in the SWIR using extend InGaAs detectors.

Affiliations and Expertise

NIST, Gaithersburg, MD, USA

Graham Machin

Affiliations and Expertise

Division of Industry and Innovation, National Physical Laboratory, Teddington, Middlesex, UK