Radiative Heat Transfer

3rd Edition

Authors: Michael Modest
Hardcover ISBN: 9780123869449
eBook ISBN: 9780123869906
Imprint: Academic Press
Published Date: 1st February 2013
Page Count: 904
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental.

Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems—many based on real world situations—making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems.

Key Features

  • Extensive solution manual for adopting instructors
  • Most complete text in the field of radiative heat transfer
  • Many worked examples and end-of-chapter problems
  • Large number of computer codes (in Fortran and C++), ranging from basic problem solving aids to sophisticated research tools
  • Covers experimental methods


A Reference for Scientists, Researchers, Engineers (mechanical, chemical as well as other branches of engineers), Physicists, Oceanographers, Meteorologists, Graduate Students, Academic Researchers

Table of Contents

About the Author


Preface to the Third Edition

List of Symbols

Chapter 1. Fundamentals of Thermal Radiation

1.1 Introduction

1.2 The Nature of Thermal Radiation

1.3 Basic Laws of Thermal Radiation

1.4 Emissive Power

1.5 Solid Angles

1.6 Radiative Intensity

1.7 Radiative Heat Flux

1.8 Radiation Pressure

1.9 Visible Radiation (Luminance)

1.10 Radiative Intensity In Vacuum

1.11 Introduction to Radiation Characteristics of Opaque Surfaces

1.12 Introduction to Radiation Characteristics of Gases

1.13 Introduction to Radiation Characteristics of Solids and Liquids

1.14 Introduction to Radiation Characteristics of Particles

1.15 The Radiative Transfer Equation

1.16 Outline of Radiative Transport Theory



Chapter 2. Radiative Property Predictions From Electromagnetic Wave Theory

2.1 Introduction

2.2 The Macroscopic Maxwell Equations

2.3 Electromagnetic Wave Propagation In Unbounded Media

2.4 Polarization

2.5 Reflection And Transmission

2.6 Theories For Optical Constants



Chapter 3. Radiative Properties of Real Surfaces

3.1 Introduction

3.2 Definitions

3.3 Predictions From Electromagnetic Wave Theory

3.4 Radiative Properties Of Metals

3.5 Radiative Properties Of Nonconductors

3.6 Effects Of Surface Roughness

3.7 Effects Of Surface Damage And Oxide Films

3.8 Radiative Properties Of Semitransparent Sheets

3.9 Special Surfaces

3.10 Experimental Methods

Reflection Measurements



Chapter 4. View Factors

4.1 Introduction

4.2 Definition Of View Factors

4.3 Methods For The Evaluation Of View Factors

4.4 Area Integration


No. of pages:
© Academic Press 2014
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Author

Michael Modest

Shaffer and George Professor of Engineering School of Engineering University of California, Merced

Affiliations and Expertise

Shaffer and George Professor of Engineering School of Engineering University of California, Merced


Jennifer X. Wen, Kingston University, UK: "This book can simply be summed up as the 'bible' for thermal radiation and its calculation methods." "I expect to see it on the bookshelf of every university and major research laboratory." "Because of the level of details the book has gone into in each specific topic, this book will be especially suitable for occasions where students are expected to read extensively outside the classroom as part of the syllabus." Andrei Fedorov, Georgia Tech: "The book is up-to-date and provides excellent coverage." "Excellent writing style with nice historical highlights. The most important asset of the book is its clear and consistent notation used throughout the manuscript. It is probably the most comprehensive treatment of the topic that is currently in existence. It has up-to-date bibliography and very sound treatment of electromagnetism foundation of thermal radiation." Peter Wong, Tufts University: "Modest has compiled together a comprehensive and detailed understanding in thermal radiative heat transfer for graduate students and practicing engineers." Yildiz Bayazitoglu, Rice University: "Very much up to date and has a good selection of topics." "Comprehensive, detailed, but simplified." "The author presented the radiative heat transfer and its interactions with other modes of heat transfer in a coherent and integrated manner emphasizing the fundamentals...The book is directed towards the graduate level students as well as towards the scientists and engineers already engaged in subject matter."