Description

An understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics.

Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction in semiconductor nanostructures, including photon statistics and photoluminescence, is the focus of part three, whilst part four explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems. Finally, part five investigates ultrafast phenomena, including femtosecond quantum optics and coherent optoelectronics with quantum dots.

With its distinguished editor and international team of expert contributors, Quantum optics with semiconductor nanostructures is an essential guide for all those involved with the research, development, manufacture and use of semiconductors nanodevices, lasers and optical components, as well as scientists, researchers and students.

Key Features

  • A key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics
  • Chapters provide a comprehensive overview of single quantum dot systems, nanolasers with quantum dot emitters, and light-matter interaction in semiconductor nanostructures
  • Explores all-solid-state quantum optics, crystal nanobeam cavities and quantum-dot microcavity systems, and investigates ultrafast phenomena

Readership

Research and Development managers in IT companies; Semiconductor and computer hardware manufacturers; Manufacturers of lasters and optical components; Scientists, researchers and students

Table of Contents

Contributor contact details

Woodhead Publishing Series in Electronic and Optical Materials

Preface

Part I: Single quantum dot systems

Chapter 1: Resonance fluorescence emission from single semiconductor quantum dots coupled to high-quality microcavities

Abstract

1.1 Introduction

1.2 Emitter state preparation in single semiconductor quantum dots: role of dephasing

1.3 Resonance fluorescence from a single semiconductor quantum dot

1.4 Dephasing of Mollow triplet sideband emission from a quantum dot in a microcavity

1.5 The phenomenon of non-resonant quantum dot-cavity coupling

1.6 Conclusion

1.7 Acknowledgments

Chapter 2: Quantum optics with single quantum dots in photonic crystal cavities

Abstract:

2.1 Introduction

2.2 Integrated, solid-state quantum optics platform: InAs quantum dots (QDs) and photonic crystal nanocavities

2.3 Photon blockade and photon-assisted tunneling

2.4 Fast, electrical control of a single quantum dot-cavity system

2.5 Phonon-mediated off-resonant interaction in a quantum dot-cavity system

2.6 Quantum photonic interfaces between InAs quantum dots and telecom wavelengths

2.7 Future trends and conclusions

2.8 Acknowledgments

Chapter 3: Modeling single quantum dots in microcavities

Abstract:

3.1 Introduction

3.2 Building blocks of the coupled microcavity-quantum dot system

3.3 Theoretical description of the single-quantum dot–microcavity system

3.4 Numerical methods and characteristic quantities

3.5 Competing electronic configurations and input/output characteristics of a single-quantum dot laser

3.6 Sources of dephasing and spectral linewidths

3.7 Analogy to the two-level system

3.8 Conclusions

Part II: Nanolasers with quantum dot emitters

Chapter 4: Highly efficient

Details

No. of pages:
602
Language:
English
Copyright:
© 2012
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9780857092328
Electronic ISBN:
9780857096395

About the editor

Frank Jahnke

Frank Jahnke is Professor at the Institute for Theoretical Physics, University of Bremen, Germany, and is internationally known for his research on semiconductor quantum optics.