Protein Homeostasis Diseases

Protein Homeostasis Diseases

Mechanisms and Novel Therapies

1st Edition - February 13, 2020

Write a review

  • Editor: Angel L. Pey
  • eBook ISBN: 9780128191330
  • Paperback ISBN: 9780128191323

Purchase options

Purchase options
DRM-free (EPub, PDF, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


Protein Homeostasis Diseases: Mechanisms and Novel Therapies offers an interdisciplinary examination of the fundamental aspects, biochemistry and molecular biology of protein homeostasis disease, including the use of natural and pharmacological small molecules to treat common and rare protein homeostasis disorders. Contributions from international experts discuss the biochemical and genetic components of protein homeostasis disorders, the mechanisms by which genetic variants may cause loss-of-function and gain-of-toxic-function, and how natural ligands can restore protein function and homeostasis in genetic diseases. Applied chapters provide guidance on employing high throughput sequencing and screening methodologies to develop pharmacological chaperones and repurpose approved drugs to treat protein homeostasis disorders.

Key Features

  • Provides an interdisciplinary examination of protein homeostasis disorders, with an emphasis on treatment strategies employing small natural and pharmacological ligands
  • Offers applied approaches in employing high throughput sequencing and screening to develop pharmacological chaperones to treat protein homeostasis disease
  • Gathers expertise from a range of international chapter authors who work across various biological methods and disease specific disciplines of relevance


Active researchers and students in biochemistry, molecular biology, pharmaceutical science, cellular biology, organismal biology, and biotechnology; medical and physical chemists; clinician scientists

Table of Contents

  • I. Introduction of protein folding and homeostasis
    1. Protein folding: how, why, and beyond
    2. Protein homeostasis and disease

    II. Protein folding and homeostasis at the organismal and proteomic scales
    3. Caenorhabditis elegans as a model organism for protein homeostasis diseases
    4. Proteome-scale studies of protein stability
    5. Classifying disease-associated variants using measures of protein activity and stability

    III. Protein homeostasis disturbance in disease: Genetics, mechanisms, and modulation by natural ligands
    6. Protein destabilization and degradation as a mechanism for hereditary disease
    7. Detection of amyloid aggregation in living systems
    8. Molecular mechanisms of amyloid aggregation in human proteinopathies
    9. Metals and amyloid gain-of-toxic mechanisms in neurodegenerative diseases
    10. Vitamin B6-dependent enzymes and disease
    11. Galactosemia: opportunities for novel therapies
    12. Protein homeostasis and regulation of intracellular trafficking of G protein-coupled receptors
    13. Structure-guided discovery of pharmacological chaperones targeting protein conformational and misfolding diseases
    14. Virtual screening in drug discovery: a precious tool for a still-demanding
    15. Differential scanning fluorimetry in the screening and validation of pharmacological chaperones for soluble and membrane proteins
    16. Cellular high-throughput screening
    17. High-throughput screening for intrinsically disordered proteins by using biophysical methods
    18. Natural and pharmacological chaperones against accelerated protein degradation: uroporphyrinogen III synthase and congenital erythropoietic porphyria

Product details

  • No. of pages: 450
  • Language: English
  • Copyright: © Academic Press 2020
  • Published: February 13, 2020
  • Imprint: Academic Press
  • eBook ISBN: 9780128191330
  • Paperback ISBN: 9780128191323

About the Editor

Angel L. Pey

Angel L. Pey obtained his Bachelor degree in Chemistry in 1999 at the Universidad Complutense in Madrid and his Ph.D. in Molecular Biology at the Universidad Autónoma in Madrid in 2004. His Ph.D. focused on genotype-phenotype correlations in Phenylketonuria and the molecular basis of tetrahydrobiopterin-responsive patients with this disease. In 2004, he moved as a post-doc to the lab directed by Prof. Aurora Martinez at the Department of Biomedicine of the University of Bergen (Norway) to work with novel structure-based and biophysical studies on phenylketonuria and therapeutic approaches for this disease based on pharmacological chaperones. In 2009, he moved to the Department of Physical Chemistry, University of Granada, to work as a Ramón y Cajal Fellow. He established his own line of research combining approaches from different disciplines (molecular and cellular biology, structural and computational biology, biochemistry and biophysics) to get an integrative view into the molecular basis and genotype-phenotype correlations in several rare and common hereditary diseases. In 2019, he was appointed as Associated Professor in Physical Chemistry. Over the years, he has taught in different programs on Enzymology, Advanced biophysical techniques, General and Physical Chemistry, and mentored several Ph.D., Master and undergraduate students. He is author of over 70 peer-reviewed scientific papers and book chapters.

Affiliations and Expertise

Associate Professor, Department of Physical Chemistry, University of Granada, Granada, Spain

Ratings and Reviews

Write a review

There are currently no reviews for "Protein Homeostasis Diseases"