Protein Folding in Silico - 1st Edition - ISBN: 9781907568176, 9781908818256

Protein Folding in Silico

1st Edition

Protein Folding Versus Protein Structure Prediction

Editors: Irena Roterman-Konieczna
eBook ISBN: 9781908818256
Hardcover ISBN: 9781907568176
Imprint: Woodhead Publishing
Published Date: 4th October 2012
Page Count: 240
Tax/VAT will be calculated at check-out
165.00
130.00
215.00
Unavailable
File Compatibility per Device

PDF, EPUB, VSB (Vital Source):
PC, Apple Mac, iPhone, iPad, Android mobile devices.

Mobi:
Amazon Kindle eReader.

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Dedication

List of figures

List of tables

About the editor

List of contributors

Introduction

Chapter 1: The early-stage intermediate

Abstract

1.1 Geometric model

1.2 Structural alphabet

1.3 Contingency table

1.4 In search of structural similarities

Chapter 2: The late-stage intermediate

Abstract:

2.1 The “ fuzzy oil drop ” model

2.2 Quantitative description of the hydrophobic core

2.3 Protein characteristics with respect to the hydrophobic core

2.4 Simulation of late-stage folding

Chapter 3: Structural information involved in the interpretation of the stepwise protein folding process

Abstract:

3.1 Balancing the quantity of information in the amino acid sequence and the early-stage intermediate

3.2 Zones on the Ramachandran map

Chapter 4: The divergence entropy characterizing the internal force field in proteins

Abstract:

4.1 Internal force field for nonbonding interactions

4.2 The impact of ligands

4.3 Structures of homodimers – protein-protein interaction

4.4 Protein containing a catalytic center

4.5 The role of exons

4.6 Conclusions

Chapter 5: Ligand-binding-site recognition

Abstract:

5.1 General model

5.2 ROC curves

5.3 Summary

Chapter 6: Use of the “fuzzy oil drop” model to identify the complexation area in protein homodimers

Abstract:

6.1 General description

6.2 ROC curves

6.3 Conclusions

Chapter 7: Simulation of the polypeptide chain folding process using the "fuzzy oil drop" model

Abstract:

7.1 Simulation of the folding process in the presence of an external hydrophobic force field

7.2 Folding in the presence of a ligand

7.3 Influence of external factors on polypeptide chain folding

Chapter 8: Misfolded proteins

Abstract:

8.1 Introduction

8.2 In silico experiment

8.3 Conclusions

8.4 Appendix 1: details of the molecular dynamics simulation

8.5 Appendix 2: details of the cluster analysis

Chapter 9: A Short description of other selected ab initio methods for protein structure prediction

Abstract:

9.1 Introduction

9.2 Simplifying the geometric model and the field function

9.3 Lattice model

9.4 ROSETTA

9.5 In search of a global minimum – force field deformation

Chapter 10: Conclusion

Abstract:

10.1 Acknowledgements

Index


Description

Protein folding is a process by which a protein structure assumes its functional shape of conformation, and has been the subject of research since the publication of the first software tool for protein structure prediction. Protein folding in silico approaches this issue by introducing an ab initio model that attempts to simulate as far as possible the folding process as it takes place in vivo, and attempts to construct a mechanistic model on the basis of the predictions made. The opening chapters discuss the early stage intermediate and late stage intermediate models, followed by a discussion of structural information that affects the interpretation of the folding process. The second half of the book covers a variety of topics including ligand binding site recognition, the "fuzzy oil drop" model and its use in simulation of the polypeptide chain, and misfolded proteins. The book ends with an overview of a number of other ab initio methods for protein structure predictions and some concluding remarks.

Key Features

  • Discusses a range of ab initio models for protein structure prediction
  • Introduces a unique model based on experimental observations
  • Describes various methods for the quantitative assessment of the presented models from the viewpoint of information theory

Readership

Those in the bio-sciences field: biochemistry, biotechnology, computer aided drug design, medical biochemistry and bioinformatics


Details

No. of pages:
240
Language:
English
Copyright:
© Woodhead Publishing 2012
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9781908818256
Hardcover ISBN:
9781907568176

About the Editors

Irena Roterman-Konieczna Editor

Dr Irena Roterman-Konieczna heads the bioinformatics group at the Jagiellonian University Medical College and the Faculty of Physics, Astronomy and Applied Computer Science. Her background is in theoretical chemistry, and her research focuses on bioinformatics, with specific focus on protein structure prediction.

Affiliations and Expertise

Jagiellonian University Medical College