Proper Orthogonal Decomposition Methods for Partial Differential Equations
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
1. Reduced-Order Extrapolation Finite Difference Schemes Based on Proper Orthogonal Decomposition
2. Reduced-Order Extrapolation Finite Element Methods Based on Proper Orthogonal Decomposition
3. Reduced-Order Extrapolation Finite Volume Element Methods Based on Proper Orthogonal Decomposition
4. Epilogue and Outlook
Description
Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R&D problems.
Key Features
- Explains ways to reduce order for PDEs by means of the POD method so that reduced-order models have few unknowns
- Helps readers speed up computation and reduce computation load and memory requirements while numerically capturing system characteristics
- Enables readers to apply and adapt the methods to solve similar problems for PDEs of hyperbolic, parabolic and nonlinear types
Readership
Graduate students and researchers in mathematically intensive environments who perform large scale computations
Details
- No. of pages:
- 278
- Language:
- English
- Copyright:
- © Academic Press 2019
- Published:
- 3rd December 2018
- Imprint:
- Academic Press
- Paperback ISBN:
- 9780128167984
- eBook ISBN:
- 9780128167991
Reviews
"This book details the application of the Proper Orthogonal Decomposition (POD) to instationary problems whose spatial semidiscretization is done either by Finite Difference (FD), Finite Element (FE) or Finite Volume (FV) methods. These three discretization methods correspond to the 3 main chapters of the book." --zbMATH
Ratings and Reviews
About the Authors
Zhendong Luo
Zhendong Luo is Professor of Mathematics at North China Electric Power University, Beijing, China. Luo is heavily involved in the areas of Optimizing Numerical Methods of PDEs; Finite Element Methods; Finite Difference Scheme; Finite Volume Element Methods; Spectral-Finite Methods; and Computational Fluid Dynamics. For the last 12 years, Luo has worked mainly on Reduced Order Numerical Methods based on Proper Orthogonal Decomposition Technique for Time Dependent Partial Differential Equations.
Affiliations and Expertise
North China Electric Power University, Beijing, China
Goong Chen
Affiliations and Expertise
Professor of Mathematics and Aerospace Engineering, Texas A & M University
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.