Processing of 'Wide Band Gap Semiconductors - 1st Edition - ISBN: 9780815514398, 9780815518778

Processing of 'Wide Band Gap Semiconductors

1st Edition

Authors: Stephen J. Pearton
eBook ISBN: 9780815518778
Hardcover ISBN: 9780815514398
Imprint: William Andrew
Published Date: 1st June 2000
Page Count: 591
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
145.00
101.50
101.50
101.50
101.50
101.50
116.00
116.00
220.00
154.00
154.00
154.00
154.00
154.00
176.00
176.00
240.00
168.00
168.00
168.00
168.00
168.00
192.00
192.00
180.00
126.00
126.00
126.00
126.00
126.00
144.00
144.00
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Wide bandgap semiconductors, made from such materials as GaN, SiC, diamond, and ZnSe, are undergoing a strong resurgence in recent years, principally because of their direct bandgaps, which give them a huge advantage over the indirect gap Sic As an example, more than 10 million blue LEDs using this technology are sold each month, and new, high brightness (15 lumens per watt), long-life white LEDs are under development with the potential to replace incandescent bulbs in many situations. This book provides readers with a broad overview of this rapidly expanding technology, bringing them up to speed on new discoveries and commercial applications. It provides specific technical applications of key processes such as laser diodes, LEDs, and very high temperature electronic controls on engines, focusing on doping, etching, oxidation passivation, growth techniques and more.

Readership

Engineers working in the fabrication and processing of blue/green light emitters and high power/high temperature electronics (such as automotive electronics), as well as technicians, researchers and scientists, and students.

Table of Contents

  1. Doping Limits and Bandgap Engineering in Wide Gap IIVI Compounds Wolfgang Faschinger 1.0 INTRODUCTION 2.0 AB INITIO CALCULATIONS OF DOPING LIMITATIONS 3.0 THE FERMI LEVEL PINNING MODEL 4.0 DOPING AND BAND STRUCTURE ENGINEERING 5.0 OHMIC CONTACT TO p-ZnSe 6.0 CONCLUSIONS
  2. Epitaxial Growth of II-VI Compounds by MOVPE Wolfgang Gebhardt and Berthold Hahn 1.0 INTRODUCTION 2.0 BINARY COMPOUNDS 3.0 TERNARY AND QUATERNARY COMPOUNDS 4.0 CONCLUDING REMARKS
  3. Ohmic Contacts to II-VI and III-V Compound Semiconductors Tae-Jie Kim and Paul H. Holloway 1.0 INTRODUCTION 2.0 OHMIC CONTACTS TO GaAs 3.0 OHMIC CONTACTS TO InP 4.0 OHMIC CONTACTS TO GaN 5.0 OHMIC CONTACTS TO ZnSe 6.0 CONCLUSIONS
  4. Dry Etching of SiC Joseph R. Flemish 1.0 INTRODUCTION 2.0 REQUIREMENTS OF DRY ETCHING IN SiC DEVICE FABRICATION 3.0 CHEMISTRY OF SiC DRY ETCHING 4.0 METHODS FOR PLASMA-ASSISTED ETCHING OF SiC 5.0 PROFILE AND MORPHOLOGY CONTROL WITH ECR ETCHING 6.0 SUMMARY
  5. Processing of Silicon Carbide for Devices and Circuits Jeffrey B. Casady 1.0 BACKGROUND 2.0 SILICON CARBIDE DEVICE PROCESSING 3.0 SURVEY OF SiC DEVICES 4.0 SiC CIRCUITS AND SENSORS 5.0 CONCLUSIONS
  6. Plasma Etching of III-V Nitrides Randy J. Shul 1.0 INTRODUCTION 2.0. ETCH TECHNIQUES 3.0 PLASMA CHEMISTRY 4.0 PRESSURE 5.0 ION ENERGY AND PLASMA DENSITY 6.0 TEMPERATURE DEPENDENCE 7.0 GROWTH TECHNIQUE 8.0 ETCH PROFILE, MORPHOLOGY, AND STOICHIOMETRY 9.0 PLASMA INDUCED DAMAGE 10.0 PLASMA ETCH APPLICATIONS 11.0 CONCLUSIONS
  7. Ion Implantation in Wide Bandgap Semiconductors John C. Zolper 1.0 INTRODUCTION 2.0 IMPLANTATION ISOLATION 3.0 IMPLANTATION DOPING 4.0 IMPURITY REDISTRIBUTION 5.0 IMPLANTATION DAMAGE: CREATION AND REMOVAL 6.0 DEVICE DEMONSTRATIONS 7.0 FUTURE WORK AND CONCLUSIONS
  8. Rare Earth Impurities in Wide Gap Semiconductors John M. Zavada 1.0 INTRODUCTION 2.0 BASIC CONCEPTS 3.0 INCORPORATION OF RE ATOMS IN WIDE GAP SEMICONDUCTORS 4.0 RE3+ PHOTOLUMINESCENCE 5.0 ELECTRICAL ACTIVATION OF RE3+ IONS 6.0 SUMMARY
  9. SIMS Analysis of Wide Bandgap Semiconductors Robert G. Wilson 1.0 INTRODUCTION 2.0 WIDE BANDGAP MATERIALS DISCUSSED HERE 3.0 SECONDARY ION MASS SPECTROMETRY (SIMS) 4.0 SIMS ISSUES 5.0 QUANTIFICATION 6.0 DIAMOND 7.0 SiC 8.0 ZnSe 9.0 LiNbO3 (AND LiTaO3) 10.0 GROUP III-NITRIDES
  10. Hydrogen in Wide Bandgap Semiconductors Stephen J. Pearton and Jewor W. Lee 1.0 INTRODUCTION 2.0 HYDROGEN INCORPORATION IN WIDE BANDGAP SEMICONDUCTORS 3.0 HYDROGEN IN GaN 4.0 HYDROGEN IN SiC 5.0 DIAMOND 6.0 II-VI COMPOUNDS
  11. Diamond Deposition and Characterization Donald R. Gilbert and Rajiv K. Singh 1.0 INTRODUCTION 2.0 PROPERTIES 3.0 FABRICATION 4.0 MODIFICATION 5.0 CHARACTERIZATION 6.0 APPLICATIONS Index

Details

No. of pages:
591
Language:
English
Copyright:
© William Andrew 2000
Published:
Imprint:
William Andrew
eBook ISBN:
9780815518778
Hardcover ISBN:
9780815514398

About the Author

Stephen J. Pearton

Affiliations and Expertise

University of Florida, Gainesville, USA