
Principles of Real Analysis
3rd Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
With the success of its previous editions, Principles of Real Analysis, Third Edition, continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis.
Key Features
- Gives a unique presentation of integration theory
- Over 150 new exercises integrated throughout the text
- Presents a new chapter on Hilbert Spaces
- Provides a rigorous introduction to measure theory
- Illustrated with new and varied examples in each chapter
- Introduces topological ideas in a friendly manner
- Offers a clear connection between real analysis and functional analysis
- Includes brief biographies of mathematicians
Readership
Upper-level graduate or undergraduate students studying real analysis
Table of Contents
Fundamentals of Real Analysis
Topology and Continuity
The Theory of Measure
The Lebesgue Integral
Normed Spaces and Lp-Spaces
Hilbert Spaces
Special Topics in Integration
Bibliography
Details
- No. of pages:
- 415
- Language:
- English
- Copyright:
- © Academic Press 1999
- Published:
- 2nd September 1998
- Imprint:
- Academic Press
- Hardcover ISBN:
- 9780120502578
- eBook ISBN:
- 9780080573106
About the Editor
Owen Burkinshaw
Affiliations and Expertise
Indiana University-Purdue University, Indianapolis , U.S.A.
About the Author
Charalambos Aliprantis
Affiliations and Expertise
Purdue University, Indianapolis, U.S.A.
Reviews
"All in all, this is a beautiful selection and a masterfully balanced presentation of the fundamentals of contemporary measure and integration theory which can be grasped easily by the student." --J. Lorenz in ZENTRALBLATT FUR MATEMATIK
"A clear and precise treatment of the subject. All details are given in the text...I used a portion of the book on extension of measures and product measures in a graduate course in real analysis. There are many exercises of varying degrees of difficulty. I highly recommend this book for classroom use." --CASPAR GOFFMAN, Department of Mathematics, Purdue University
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.