Principles of Electron Optics

Principles of Electron Optics

Wave Optics

3rd Edition - May 27, 1994

Write a review

  • Authors: Peter Hawkes, E. Kasper
  • eBook ISBN: 9780080984162

Purchase options

Purchase options
DRM-free (Mobi, PDF, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

The three volumes in the PRINCIPLES OF ELECTRON OPTICS Series constitute the first comprehensive treatment of electron optics in over forty years. While Volumes 1 and 2 are devoted to geometrical optics, Volume 3 is concerned with wave optics and effects due to wave length. Subjects covered include:Derivation of the laws of electron propagation from SchrUdinger's equationImage formation and the notion of resolutionThe interaction between specimens and electronsImage processingElectron holography and interferenceCoherence, brightness, and the spectral functionTogether, these works comprise a unique and informative treatment of the subject. Volume 3, like its predecessors, will provide readers with both a textbook and an invaluable reference source.

Readership

Electron microscopists, electronic engineers/designers, mass spectrometer and accelerator designers, and applied physicists.

Table of Contents

  • Wave Mechanics: The Schrodinger Equation. The Relativistic Wave Equation. The Eikonal Approximation. Paraxial Wave Optics. The General Theory of Electron Diffraction and Inference. Elementary Diffraction Patterns. Electron Interference and Electron Holography: Principles of Interferometry. Principles of Holography. Theory of Image Formation: Fundamentals of Transfer Theory. The Theory of Bright-field Imaging. Image Formation in the Scanning Transmission Electron Microscope. Electron Interactions in Thin Specimens: Electron Interactions in Amorphous Specimens. Electron Interactions in Crystalline Specimens. Digital Image Processing: Acquisition, Sampling and Coding. Enhancement. Linear Restoration.Nonlinear Restoration. Three-dimensional Reconstruction. Image Analysis. Instrument Control and Instrumental Image Manipulation. Coherence, Brightness and Spectral Functions: Coherence and the Brightness Functions. Instrumental Aspects of Coherence.Appendix. Notes and References. Index.

Product details

  • No. of pages: 752
  • Language: English
  • Copyright: © Academic Press 1994
  • Published: May 27, 1994
  • Imprint: Academic Press
  • eBook ISBN: 9780080984162

About the Authors

Peter Hawkes

Peter Hawkes
Peter Hawkes obtained his M.A. and Ph.D (and later, Sc.D.) from the University of Cambridge, where he subsequently held Fellowships of Peterhouse and of Churchill College. From 1959 – 1975, he worked in the electron microscope section of the Cavendish Laboratory in Cambridge, after which he joined the CNRS Laboratory of Electron Optics in Toulouse, of which he was Director in 1987. He was Founder-President of the European Microscopy Society and is a Fellow of the Microscopy and Optical Societies of America. He is a member of the editorial boards of several microscopy journals and serial editor of Advances in Electron Optics.

Affiliations and Expertise

Laboratoire d'Optique Electronique du Centre National de la Recherche Scientifique (CEMES), France

E. Kasper

Erwin Kasper studied physics at the Universities of Münster and Tübingen (Germany), where he obtained his PhD in 1965 and the habilitation to teach physics in 1969. After scientific spells in the University of Tucson, Arizona (1966) and in Munich (1970), he resumed his research and teaching in the Institute of Applied Physics, University of Tübingen, where he was later appointed professor. He lectured on general physics and especially on electron optics. The subject of his research was theoretical electron optics and related numerical methods on which he published numerous papers. After his retirement in 1997, he published a book on numerical field calculation (2001).

Affiliations and Expertise

Institute of Applied Physics, University of Tuebingen, Tuebingen, Germany

Ratings and Reviews

Write a review

There are currently no reviews for "Principles of Electron Optics"