Principles of Cellular Engineering

1st Edition

Understanding the Biomolecular Interface

Editors: Michael King
Hardcover ISBN: 9780123693921
eBook ISBN: 9780080539638
Imprint: Academic Press
Published Date: 19th December 2005
Page Count: 320
133.00 + applicable tax
81.00 + applicable tax
101.00 + applicable tax
129.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine.

Key Features

-Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses

Readership

Biomedical engineers, cell and molecular biologists, and graduate students in cell and tissue engineering

Table of Contents

Partial Contents: PART I. NEUTROPHIL ADHESION Adhesion of flowing neutrophils to model vessel surfaces Bond formation during cell compression A flow chamber for capillary networks Membrane dynamics during neutrophil recruitment Hydrodynamic recruitment of cells to reactive surfaces

PART II: CELL-SUBSTRATE ADHESION Cell tensegrity models and cell-substrate interactions Use of hydrodynamic shear stress to analyze cell adhesion Traction forces exerted by endothelial cells Control of endothelial cell adhesion by mechanotransmission

PART III. ENGINEERED BIOMIMETIC SURFACES Realistic atomistic modeling of protein adsorption to ceramic biomaterials Cell responses to micro- and nano-topography

Details

No. of pages:
320
Language:
English
Copyright:
© Academic Press 2006
Published:
Imprint:
Academic Press
eBook ISBN:
9780080539638
Hardcover ISBN:
9780123693921

About the Editor

Michael King

Affiliations and Expertise

Cornell University, Ithaca, NY, USA