COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Plasma Etching Processes for CMOS Devices Realization - 1st Edition - ISBN: 9781785480966, 9780081011966

Plasma Etching Processes for CMOS Devices Realization

1st Edition

Editor: Nicolas Posseme
eBook ISBN: 9780081011966
Hardcover ISBN: 9781785480966
Imprint: ISTE Press - Elsevier
Published Date: 18th January 2017
Page Count: 136
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent.
Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography.
This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization.

Key Features

  • Helps readers discover the master technology used to pattern complex structures involving various materials
  • Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials
  • Teaches users how etch compensation helps to create devices that are smaller than 20 nm


Postgraduate students, academics, and researchers of materials science and materials engineers within the semiconductor industry

Table of Contents

1: CMOS Devices Through the Years


1.1 Scaling law by Dennard

1.2 CMOS device improvement through the years

1.3 Summary

1.4 What is coming next?

2: Plasma Etching in Microelectronics


2.1 Overview of plasmas and plasma etch tools

2.2 Plasma surface interactions during plasma etching

2.3 Patterns transfer by plasma etching

2.4 Conclusion

3: Patterning Challenges in Microelectronics


3.1 Optical immersion lithography

3.2 Next-generation lithography

3.3 Conclusion

4: Plasma Etch Challenges for Gate Patterning


4.1 pSi gate etching

4.2 Metal gate etching

4.3 Stopping on the gate oxide

4.4 High-k dielectric etching

4.5 Line width roughness transfer during gate patterning

4.6 Chamber wall consideration after gate patterning

4.7 Summary


No. of pages:
© ISTE Press - Elsevier 2017
18th January 2017
ISTE Press - Elsevier
eBook ISBN:
Hardcover ISBN:

About the Editor

Nicolas Posseme

Nicolas Posseme is a Senior Research Scientist in MIcrotechnologie & Nanotechnology and Deputy Head of Plasma Etching & Stripping in the Silicon Technologies division at the CEA-LETI Laboratory in Grenoble, France.

Affiliations and Expertise

CEA-LETI, Grenoble, France

Ratings and Reviews