Physics of Condensed Matter

1st Edition

Print ISBN: 9780123849540
eBook ISBN: 9780123849557
Imprint: Academic Press
Published Date: 20th December 2010
Page Count: 688
107.95 + applicable tax
65.99 + applicable tax
77.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors.

The book begins with a clear, coherent picture of simple models of solids and properties and progresses to more advanced properties and topics later in the book. It offers a comprehensive account of the modern topics in condensed matter physics by including introductory accounts of the areas of research in which intense research is underway. The book assumes a working knowledge of quantum mechanics, statistical mechanics, electricity and magnetism and Green's function formalism (for the second-semester curriculum).

Key Features

  • Covers many advanced topics and recent developments in condensed matter physics which are not included in other texts and are hot areas: Spintronics, Heavy fermions, Metallic nanoclusters, Zno, Graphene and graphene-based electronic, Quantum hall effect, High temperature superdonductivity, Nanotechnology
  • Offers a diverse number of Experimental techniques clearly simplified
  • Features end of chapter problems
  • Check out the companion website:
    and the Instructor website:


Graduate students and advanced undergraduate students doing research in condensed matter physics, materials science, solid state chemistry and solid-state areas of electrical engineering.

Table of Contents

Chapter 1. Basic Properties of Crystals; 1.1 Crystal Lattices; 1.2 Bravais Lattices in Two- and Three- Dimensions; 1.3 Lattice Planes and Miller Indices; 1.4 Bravais Lattices and Crystal Structures; 1.5 Crystal Defects and Surface Effects; 1.6 Some Simple Crystal Structures; 1.7 Bragg Diffraction; 1.8 Laue Method; 1.9 Reciprocal Lattice; 1.10 Brillouin Zone; 1.11 Diffraction By a Crystal Lattice With a Basis; Problems; References; Chapter 2. Phonons and Lattice Vibrations; 2.1 Lattice Dynamics; 2.2 Lattice Specific heat; 2.3 Second Quantization; 2.4 Quantization of Lattice waves; Problems; References; Chapter 3. Free Electron Model; 3.1 The Classical (Drude) Model of a Metal; 3.2nbsp; Sommerfeld Model; 3.3nbsp; Fermi Energy and the chemical potential.; 3.4nbsp; Specific heat of the electron gas; 3.5nbsp; DC electrical conductivity; 3.6nbsp; The Hall effect; 3.7nbsp; Failures of the Free Electron Model; Problems; References; Chapter 4. Nearly Free Electron Model; 4.1 Electrons in a Weak Periodic Potential; 4.2 Bloch Functions and Bloch Theorem; 4.3 Reduced, Extended and Repeated Zone Schemes; 4.4 Band Index; 4.5 Effective Hamiltonian; 4.6 Proof of Bloch Theorem From Translational Symmetry; 4.7 Approximate Solution Near a Zone Boundary; 4.8 Different Zone Schemes; 4.9 Elementary Band Theory of Solids; 4.10 Metals, Insulators and Semiconductors; 4.11 Brillouin Zones; 4.12 Fermi Surface; Problems; References; Chapter 5. Band Structure Calculations; 5.1. Introduction; 5.2. Tight-Binding Approximation; 5.3. LCAO Method; 5.4. Wannier Functions; 5.5. Cellular Method; 5.6. Orthogonalized Plane Wave (OPW) Method; 5.7. Pseudopotentials; 5.8. Muffin-Tin Potential; 5.9. Augmented Plane Wave (APW) Method; 5.10. Green’s Function Method; 5.11. Model Pseudoptentials; 5.12. Empirical Pseudopotentials; 5.13. First-Principle Pseudopotentials; Problems; References; Chapter 6. Static and Transport Properties of Solids; 6.1. Band Picture; 6.2. Bond Picture; 6.3. Diamond Structure; 6.4.


No. of pages:
© Academic Press 2011
Academic Press
eBook ISBN:
Hardcover ISBN:


"This book, with reasonable size, gives a general view of the physics of condensed matter with two main purposes in mind: firstly, to display a coherent and clear picture of classical simple models of crystalline solids, and secondly, to introduce modern topics in a form as simple as possible. It is written in eighteen chapters which are almost self-contained. Furthermore, all keywords of condensed matter are dealt with and expanded in a detailed manner: crystals, phonons, electrons, solids, semiconductors, electronics, spintronics, diamagnetism, paramagnetism, superconductivity, fermions, nanoclusters. This is a standard textbook designed for a one- or two-semester graduate course."--Zentralblatt MATH 1222-1