This new edition of Robert G. Mortimer's Physical Chemistry has been thoroughly revised for use in a full year course in modern physical chemistry. In this edition, Mortimer has included recent developments in the theories of chemical reaction kinetics and molecular quantum mechanics, as well as in the experimental study of extremely rapid chemical reactions. While Mortimer has made substantial improvements in the selection and updating of topics, he has retained the clarity of presentation, the integration of description and theory, and the level of rigor that made the first edition so successful.

Key Features

@bul:* Emphasizes clarity; every aspect of the first edition has been examined and revised as needed to make the principles and applications of physical chemistry as clear as possible. * Proceeds from fundamental principles or postulates and shows how the consequences of these principles and postulates apply to the chemical and physical phenomena being studied. * Encourages the student not only to know the applications in physical chemistry but to understand where they come from. * Treats all topics relevant to undergraduate physical chemistry.


Undergraduate and graduate students of Physical Chemistry, professional chemists, students of Physics, Biology, and Engineering.

Table of Contents

Preface Chapter 1 Systems, States, and Processes 1.1 Scientific Inquiry 1.2 Systems and States 1.3 Units of Measurement. SI Units 1.4 State Functions 1.5 The Relationship Between Macrostates and Microstates 1.6 Processes Problems Chapter 2 The Equilibrium Macroscopic States of Gases and Liquids 2.1 Mathematical Functions and the Equilibrium Macroscopic State of a Simple System 2.2 Real Liquids and Solids 2.3 Real Gases 2.4 The Coexistence of Phases and the Critical Point Problems Chapter 3 Work, Heat, and Energy: The First Law of Thermodynamics 3.1 Work and the State of a System 3.2 Heat 3.3 Internal Energy; The First Law. 3.4 Calculation of Amounts of Heat and Energy Changes 3.5 Enthalpy - A Convenience Variable 3.6 Calculation of Enthalpy Changes for Non-chemical Processes 3.7 Calculation of Enthalpy Changes for a Class of Chemical Reactions 3.8 Energy Changes of Chemical Reactions Problems Chapter 4 The Second and Third Laws of Thermodynamics: Entropy 4.1 The Second Law of Thermodynamics and the Carnot Heat Engine 4.2 The Mathematical Statement of the Second Law. Entropy. 4.3 The Calculation of Entropy Changes 4.4 Statistical Entropy 4.5 The Third Law of Thermodynamics and Absolute Entropies Problems Chapter 5 The Thermodynamics of Real Systems 5.1 Criteria for Spontaneous Processes and for Equilibrium. The Gibbs and Helmholtz Energies. 5.2 Fundamental Relations for Clo


No. of pages:
© 2000
Academic Press
Print ISBN:
Electronic ISBN:

About the author

Robert Mortimer

Robert Mortimer has been a professor of chemistry at Rhodes College since 1981. He is the recipient of a Woodrow Wilson National Fellowship as well as a National Science Foundation Predoctoral Fellowship.