Phenotypic Switching - 1st Edition - ISBN: 9780128179963

Phenotypic Switching

1st Edition

Implications in Biology and Medicine

0.0 star rating Write a review
Editors: Herbert Levine Mohit Jolly Prakash Kulkarni Vidyanand Nanjundiah
Paperback ISBN: 9780128179963
Imprint: Academic Press
Published Date: 1st June 2020
Page Count: 1112
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Phenotypic Switching: Implications in Biology and Medicine provides a comprehensive examination of phenotypic switching across biological systems, including underlying mechanisms, evolutionary significance, and its role in biomedical science. Contributions from international leaders discuss conceptual and theoretical aspects of phenotypic plasticity, its influence over biological development, differentiation, biodiversity, and potential applications in cancer therapy, regenerative medicine and stem cell therapy, among other treatments. Chapters discuss fundamental mechanisms of phenotypic switching, including transition states, cell fate decisions, epigenetic factors, stochasticity, protein-based inheritance, specific areas of human development and disease relevance, phenotypic plasticity in melanoma, prostate cancer, breast cancer, non-genetic heterogeneity in cancer, hepatitis C, and more.

This book is essential for active researchers, basic and translational scientists, clinicians, postgraduates and students in genetics, human genomics, pathology, bioinformatics, developmental biology, evolutionary biology and adaptive opportunities in yeast.

Key Features

  • Thoroughly addresses the conceptual, experimental and translational aspects that underlie phenotypic plasticity
  • Emphasizes quantitative approaches, nonlinear dynamics, mechanistic insights and key methodologies to advance phenotypic plasticity studies
  • Features a diverse range of chapter contributions from international leaders in the field

Readership

Active researchers, basic and translational scientists, clinicians, postgraduates, and students in the areas of genetics, human genomics, pathology, bioinformatics, developmental biology, evolutionary biology, and pharmaceutical science; medical students, clinical and laboratory genetics trainees (residents and fellows)

Table of Contents

1. The fundamentals of Phenotypic Plasticity

2. Quantifying Waddington landscapes and paths of cell fate decisions
3. The physics of cell fate
4. Stochastic phenotypic switching in endothelial cell heterogeneity
5. For an augmented epistemology of chance in the study of cell differentiation and development
6. Manoeuvring protein functions and functional levels by structural excursions
7. Cell-state organization by exploratory sloppy dynamics
8. Random walk across the epigenetic landscape
9. Metabolic Constraints and Phenotypic Switching: Evidence From Theory and Experiment
10. Dissecting environmentally induced and stochastic developmental phenotype variation
11. Cell differentiation in animals: metazoan-specific amplification hubs of inherent cell functions
12. Regulation of developmental plasticity from the perspective of evolutionary developmental biology
13. Phenotypic and functional variation in bird song dialects
14. Domestication as a Process Generating Phenotypic Diversity
15. Evolution by developmental scaffolding: Acquiring new phenotypes through sympoiesis
16. Bitter-Sweet Dimensions to Ovarian Cancer Progression and Metastasis
17. Phenotypic plasticity and the origins of novelty
18. Epithelial-Mesenchymal Transition in Cancer
19. Phenotypic switching and prostate diseases: A model proposing a causal link between benign prostatic hyperplasia and prostate cancer
20. Phenotypic switching and lineage switching in prostate cancer
21. Implications of non-genetic heterogeneity in cancer drug resistance and malignant progression
22. Phenotypic plasticity: the emergence of cancer stem cells and collective cell migration
23. Bistability in Virus-Host Interaction Networks Underlies the Success of Hepatitis C Treatments
24. Adaptive phenotypic switching in breast cancer in response to matrix deprivation
25. Phenotypic instability induced by tissue disruption at the origin of cancer
26. Phenotypic plasticity in fungi mediated by switches in protein conformation
27. Incorporating evolutionary dynamics of cancer to design adaptive treatment strategies

Details

No. of pages:
1112
Language:
English
Copyright:
© Academic Press 2020
Published:
1st June 2020
Imprint:
Academic Press
Paperback ISBN:
9780128179963

About the Editor

Herbert Levine

Dr. Herbert Levine is Hasselmman Professor in Bioengineering at Rice University. He is also the co-director of Center for Theoretical Biological Physics (CTBP), a National Science Foundation (NSF) Physics Frontier Center devoted to applying concepts and methods from physical sciences to complex biological and biomedical problems. He is also the coordinator of an international research network of researchers in the Physics of Living Systems, under the auspices of the NSF Science Across Virtual Institutes (SAVI) initiative. Dr. Levine did his undergraduate work at MIT, and received his Ph.D. in physics from Princeton University in 1979. After a postdoctoral fellowship at Harvard and a position on the research staff of the corporate research lab of Schlumberger Inc., he was appointed in 1987 to the faculty at the University of California, San Diego. He rose to the ranks of distinguished professor before leaving in 2012 to accept his new post at Rice. He is an elected member of the National Academy of Sciences and a fellow of the American Academy of Arts and Sciences.

Affiliations and Expertise

Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, TX USA

Mohit Jolly

Dr. Mohit Kumar Jolly Mohit obtained his B.Tech. and M. Tech. in Biological Sciences and Bioengineering at IIT Kanpur, India, and his Ph.D. in Bioengineering from Rice University, working at the interface of systems biology and cancer biology. After a short stint as independent postdoctoral fellowship in Computational Cancer Biology, he joined the Centre for BioSystems Science and Engineering at Indian Institute of Science (IISc) Bangalore, as an Assistant Professor. His work focuses on integrating mechanism-based mathematical models with experiments and clinical data to elucidate the mechanisms of cancer metastasis and therapy resistance. He won the 2016 iBiology Young Scientist Seminar Series – a coveted award for communicating one’s research to diverse audience.

Affiliations and Expertise

Indian Institute of Science (IISc), Bangalore, India

Prakash Kulkarni

Dr. Prakash Kulkarni is a Research Professor at the City of Hope National Medical Centre. After receiving his PhD in biochemistry from India, he completed his postdoctoral training in cell biology at New York University School of Medicine. He began his independent academic career as an Assistant Professor of urology and oncology at Johns Hopkins University School of Medicine, from where he moved to the protein biophysics laboratory at the Institute for Bioscience & Biotechnology Research at the University of Maryland, prior to taking up is current position. Prior to Johns Hopkins, Dr. Kulkarni held Staff Scientist positions in chemistry and biology at the California Institute of Technology, and in genetics at the Yale University School of Medicine. His main research interests are understanding how conformational dynamics of intrinsically disordered proteins (IDPs) contributes to non-genetic mechanisms underlying disease pathology and heterogeneity in cancer.

Affiliations and Expertise

Research Professor, Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Centre, Duarte, CA, USA

Vidyanand Nanjundiah

Dr. Vidyanand Nanjundiah is an Honorary Professor in the Center for Human Genetics, Bengaluru. He earned his BS from the University of Bombay and PhD from the University of Chicago. He held post-doctoral positions at the Hubrecht Laboratorium Utrecht, The Netherlands, Max-Planck-Institut Tubingen, Germany, and Biozentrum, Basel, Switzerland. He began his career as an Assistant Professor and rose to the rank of Professor at the Centre for Theoretical Studies, Indian Institute of Science (IISc), Bangalore. He has been a member of the Molecular Biology Unit, Tata Institute of Fundamental Research Bombay; Department of Molecular Reproduction, Development and Genetics and Centre for Ecological Sciences, Indian Institute of Science, Bangalore; and at Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. He is an elected member of the Indian National Science Academy.

Affiliations and Expertise

Honorary Professor, Center for Human Genetics, Bengaluru, India and Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, South Africa

Ratings and Reviews