Phase Transformations in Steels - 1st Edition - ISBN: 9781845699710, 9780857096111

Phase Transformations in Steels

1st Edition

Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques

Editors: Elena Pereloma David Edmonds
Hardcover ISBN: 9781845699710
eBook ISBN: 9780857096111
Imprint: Woodhead Publishing
Published Date: 11th May 2012
Page Count: 680
Tax/VAT will be calculated at check-out
190.00
240.00
315.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

Contributor contact details

Foreword

Introduction

Part I: Diffusionless transformations

Chapter 1: Crystallography of martensite transformations in steels

Abstract:

1.1 Introduction

1.2 Martensite transformations in steels

1.3 Phenomenological theory of martensite crystallography (PTMC)

1.4 The post phenomenological theory of martensite crystallography (PTMC) period

1.5 Strain energy – the Eshelby/Christian model and the infinitesimal deformation (ID) approach

1.6 Interfacial dislocation models

1.7 Future trends

1.8 Conclusions

Chapter 2: Morphology and substructure of martensite in steels

Abstract:

2.1 Morphology and crystallographic features of martensite in ferrous alloys

2.2 Morphology and substructure of lath martensite

2.3 Morphology and substructure of lenticular martensite

2.4 Morphology and substructure of thin plate martensite

2.5 Conclusions

Chapter 3: Kinetics of martensite transformations in steels

Abstract:

3.1 Introduction

3.2 Mechanism and kinetics of martensitic transformation

3.3 Mechanically induced transformations

3.4 Transformation plasticity constitutive relations and applications

3.5 Conclusions

Chapter 4: Shape memory in ferrous alloys

Abstract:

4.1 Introduction

4.2 Fe-Pt alloys

4.3 Fe-Ni and Fe-Ni-C alloys

4.4 Fe-Ni-Co-based alloys

4.5 Austenitic stainless steels with low stacking fault energy (SFE)

4.6 Fe-Mn-based alloys

4.7 Summary

4.8 Acknowledgements

Chapter 5: Tempering of martensite in carbon steels

Abstract:

5.1 Introduction

5.2 Martensitic microstructures prior to tempering heat treatments

5.3 Classification of aging and tempering stages: general considerations

5.4 Changes in martensitic fine structure due to aging

5.5 The stages of tempering

5.6 Conclusions

Part II: Phase transformations in high strength steels

Chapter 6: Phase transformations in microalloyed high strength low alloy (HSLA) steels

Abstract:

6.1 Introduction to microalloyed high strength low alloy (HSLA) steels

6.2 Brief historical review of the development of microalloyed steels

6.3 Solubility of microalloying elements in austenite and ferrite

6.4 Precipitation

6.5 Effects of microalloying on transformation kinetics

6.6 Phase transformations during high strength low alloy (HSLA) steels processing

6.7 Controlled processed ferrite/bainite and acicular ferrite steels

6.8 Conclusions and future trends

6.9 Acknowledgements

Chapter 7: Phase transformations in transformation induced plasticity (TRIP)-assisted multiphase steels

Abstract:

7.1 Introduction

7.2 Historical perspectives on the emergence of transformation induced plasticity (TRIP)-assisted multiphase steels

7.3 Influence of parameters of the thermomechanical process on the formation of multiphase microstructures containing retained austenite

7.4 Conclusion and future trends

Chapter 8: Phase transformations in quenched and partitioned steels

Abstract:

8.1 Introduction to the quenching and partitioning concept

8.2 Microstructure development fundamentals and alloy designs

8.3 Mechanical behavior, potential applications, and implementation status

8.4 Conclusions

Chapter 9: Phase transformations in advanced bainitic steels

Abstract:

9.1 Introduction

9.2 Design of third generation of advanced high strength steels

9.3 Carbide-free bainitic steels: a material ready for the nanocentury

9.4 Conclusions and future trends

9.5 Acknowledgement

Chapter 10: Phase transformations in high manganese twinning-induced plasticity (TWIP) steels

Abstract:

10.1 Introduction

10.2 Fe-Mn-X alloys

10.3 Strain-induced twinning

10.4 Twinning-induced plasticity (TWIP) industrialization

10.5 Conclusions

10.6 Acknowledgements

Chapter 11: Phase transformations in maraging steels

Abstract:

11.1 State of the art of ultra high strength steels

11.2 Types of maraging steels

11.3 Microstructure and precipitates in maraging steels

11.4 Reverted austenite and mechanical properties

11.5 Evolution of precipitates and the overall process

11.6 Precipitation kinetic theory in Fe-12Ni-6Mn maraging type alloy

11.7 Research trends

Part III: Modelling phase transformations

Chapter 12: First principles in modelling phase transformations in steels

Abstract:

12.1 Introduction

12.2 Ab initio description of phase stability of pure iron

12.3 Ab initio phase stability of iron carbides

12.4 Substitutional alloying elements

12.5 Ab initio description of diffusivity in bcc Fe

12.6 Future trends

Chapter 13: Phase field modelling of phase transformations in steels

Abstract:

13.1 Introduction

13.2 Phase field methodology

13.3 Austenite formation

13.4 Austenite decomposition

13.5 Future trends

Chapter 14: Molecular dynamics modeling of martensitic transformations in steels

Abstract:

14.1 Introduction

14.2 Interatomic interaction potentials

14.3 Martensitic transformations in iron: case studies

14.4 Transformations in ferrous nanosystems

14.5 Conclusions and future trends

14.6 Acknowledgement

Chapter 15: Neural networks modeling of phase transformations in steels

Abstract:

15.1 Introduction

15.2 Essence of the method

15.3 On the quest of critical temperatures

15.4 Determining microstructural parameters

15.5 Development of continuous cooling transformation (CCT) diagrams

15.6 Conclusions and future trends

Part IV: Advanced analytical techniques for studying phase transformations in steels

Chapter 16: Application of modern transmission electron microscopy (TEM) techniques to the study of phase transformations in steels

Abstract:

16.1 Introduction

16.2 Transmission electron microscopy (TEM) sample preparation

16.3 Conventional transmission electron microscopy (CTEM) of steels

16.4 Modern transmission electron microscopy (TEM) of steels

16.5 In-situ transmission electron microscopy (TEM)

16.6 Future trends: emerging transmission electron microscopy (TEM) techniques

16.8 Conclusions

Chapter 17: Atom probe tomography for studying phase transformations in steels

Abstract:

17.1 Introduction

17.2 Outline of the technique

17.3 Specimen requirements

17.4 Recent developments

17.5 Interpretation of data

17.6 Characterizing and understanding phase transformations in various steels

17.7 Future trends

17.8 Conclusion

17.9 Acknowledgments

Chapter 18: Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels

Abstract:

18.1 Introduction

18.2 Fundamentals of the electron backscatter diffraction (EBSD) technique

18.3 The current standard of 2D electron backscatter diffraction (EBSD) applications

18.4 3D electron backscatter diffraction (3D-EBSD)

18.5 Conclusions and future development of the technique

Chapter 19: Application of synchrotron and neutron scattering techniques for tracking phase transformations in steels

Abstract:

19.1 Introduction

19.2 X-ray and neutron scattering techniques

19.3 Measurements of phase transformation in steels

19.4 Conclusions and future trends

19.5 Acknowledgements

Index


Description

The processing-microstructure-property relationships in steels continue to present challenges to researchers because of the complexity of phase transformation reactions and the wide spectrum of microstructures and properties achievable. This major two-volume work summarises the current state of research on phase transformations in steels and its implications for the emergence of new steels with enhanced engineering properties.

Volume 2 reviews current research on diffusionless transformations and phase transformations in high strength steels, as well as advances in modelling and analytical techniques which underpin this research. Chapters in part one discuss the crystallography and kinetics of martensite transformations, the morphology, substructure and tempering of martensite as well as shape memory in ferrous alloys. Part two summarises research on phase transformations in high strength low alloy (HSLA) steels, transformation induced plasticity (TRIP)-assisted multiphase steels, quenched and partitioned steels, advanced nanostructured bainitic steels, high manganese twinning induced plasticity (TWIP) and maraging steels. The final two parts of the book review advances in modelling and the use of advanced analytical techniques to improve our understanding of phase transformations in steels.

With its distinguished editors and distinguished international team of contributors, the two volumes of Phase transformations in steels is a standard reference for all those researching the properties of steel and developing new steels in such areas as automotive engineering, oil and gas and energy production.

Key Features

  • Alongside its companion volume, this major two-volume work summarises the current state of research on phase transformations in steels
  • Reviews research on diffusionless transformations and phase transformations in high strength steels
  • Examines advances in modelling and the use of advanced analytical techniques to improve understanding of phase transformations in steels

Readership

Scientists, metallurgical engineers and senior technicians in research and development laboratories, designers and fabricators, as well as academics and students.


Details

No. of pages:
680
Language:
English
Copyright:
© Woodhead Publishing 2012
Published:
Imprint:
Woodhead Publishing
eBook ISBN:
9780857096111
Hardcover ISBN:
9781845699710

Reviews

"The two volumes represent a thorough study on this subject...gives a better understanding on microstructural and mechanical behavior of steels, predict their lifetime evolution and act to prevent material degradation and significant environmental impacts."--International Journal of Environmental Studies, Vol 70, Issue 2-13

A new and comprehensive book on phase transformations is both timely and welcome… The various chapters bring nicely up-to-date the vast knowledge of steel transformations in the literature., Professor Ted Massalski, Carnegie Mellon University, USA (from the Foreword)


About the Editors

Elena Pereloma Editor

Elena Pereloma is Professor of Physical Metallurgy and Director of the BlueScope Steel Metallurgy Centre at the University of Wollongong, Australia.

Affiliations and Expertise

University of Wollongong, Australia

David Edmonds Editor

David V. Edmonds is Emeritus Professor of Metallurgy at University of Leeds, UK. Both have made major contributions to steel research.

Affiliations and Expertise

University of Leeds, UK