Description

During the last few years, the pace of research in the field of neuropeptide receptors has increased steadily: new neuropeptides were discovered, and the classification of receptor subtypes has been refined. It thus appeared essential to update the information. Peptide Receptors Part I summarizes current knowledge on ten distinct peptide families.
This volume integrates photomontages and maps of quantitative receptor autoradiography, in situ hybridization histochemistry, and immunocytochemistry images. Application of these classical techniques and of new approaches such as transgenic and knock-out animals has revealed a distinct species and tissue specific variation in receptor subtypes expression and pharmacology in the mammalian central nervous system.
The functional role of neuropeptides and their receptors in the CNS has been investigated thanks to the development of potent and selective receptor antagonists and agonists. The development of specific neuropeptide-related molecules will help to get a better understanding of receptor subtype physiology and neuronal distribution and may lead to innovative treatments in a variety of brain disorders.

Table of Contents

I. Somatostatin receptors. (P. Dournaud, A. Slama, A. Beaudet, J. Epelbaum). 1. Introduction. 2. Structural and biochemical properties. 3. Localization of somatostatin binding sites in central nervous system. 4. Localization of somatostatin receptor subtypes. 4.1. sst1 receptor. 4.2. sst2 receptor. 4.3. sst3 receptor. 4.4. sst4 receptor. 4.5. sst5 receptor. 5. Somatostatin receptors in brain disorders. 5.1. Brain tumors. 5.2. Alzheimer's disease. 5.3. Epilepsy. 6. Perspectives. 7. Abbreviations. 8. Acknowledgements. 9. References. II. Brain PACAP/VIP receptors: regional distribution, functional properties and physiological relevance. (P.J. Magistretti, L. Journot, J. Bockaert, J.-L. Martin). 1. Introduction. 1.1. Biosynthesis of VIP and PACAP. 1.2. VIP and PACAP binding sites. 2. Distribution of VIP and PACAP receptors. 2.1. Autoradiographic distribution of VIP binding sites in rodent brain. 2.2. Distribution of PACAP binding sites in rat brain. 2.3. Comparison between the distribution of VIP and PACAP binding sites. 3. Molecular cloning and pharmacological characterization of VIP/PACAP receptors. 3.1. VPAC1 and VPAC2: two genes, two receptors. 3.2. PAC1: one gene, seven receptors (at least). 3.3. Pharmacology. 3.4. Distribution of VPAC1 and VPAC2 receptors in rat brain. 3.5. Distribution of PAC1 receptor mRNA. 4. Signal transduction. 4.1. VPAC1, VPAC2: two receptors, one effector. 4.2. PAC1: seven receptors, two effectors. 4.3. Agonist-directed PAC1 receptor trafficking of PLC stimulation. 4.4. Additional PAC1 receptor signal transduction. 5. Trophic actions of VIP and PACAP. 5.1. Neurotrophic actions elicited by VIP. 5.2. Stimulation of early embryonic growth by VIP. 5.3. VIP protects against excitotoxic cell death. 5.4. Neurotrophic and anti-apoptotic properties of PACAP. 6. Involvement of VIP/PACAP in circadian rhythms and sleep. 6.1. Involvement of VIP/PACAP in circad

Details

No. of pages:
462
Language:
English
Copyright:
© 2000
Published:
Imprint:
Elsevier Science
Print ISBN:
9780444829726
Electronic ISBN:
9780080538587

About the editors

A. Bjorklund

Affiliations and Expertise

Department of Physiological Sciences, Wallenberg Neuroscience Center, Biomedical Center A11, S-22184 Lund, Sweden

T. Hokfelt

Affiliations and Expertise

Department of Neuroscience, Retzius Laboratory B3:4, Karolinska Institutet, Retzius väg 8, S-17177 Stockholm, Sweden

P. Quinton

Affiliations and Expertise

IRISA/INRIAA, Rennes, France

Reviews

@from:(B.Z. Roitberg, University of Illinois at Chicago College of Medicine) @qu:This is an optimal way for a newcomer to the field to learn the subject and a good reference for any neuroscientist. I have no hesitation recommending it in the highest terms. @source:Doody's