Orbital Mechanics for Engineering Students - 2nd Edition - ISBN: 9780123747785, 9780080887845

Orbital Mechanics for Engineering Students

2nd Edition

Authors: Howard Curtis
Hardcover ISBN: 9780123747785
eBook ISBN: 9780080887845
Imprint: Butterworth-Heinemann
Published Date: 26th October 2009
Page Count: 744
Tax/VAT will be calculated at check-out
74.95
104.00
62.99
104.00
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents


Preface

Acknowledgments

Chapter 1 Dynamics of point masses

1.1 Introduction

1.2 Vectors

1.3 Kinematics

1.4 Mass, force and Newton’s law of gravitation

1.5 Newton’s law of motion

1.6 Time derivatives of moving vectors

1.7 Relative motion

1.8 Numerical integration

1.8.1 Runge-Kutta methods

1.8.2 Heun’s Predictor-Corrector method

1.8.3 Runge-Kutta with variable step size

Problems

List of Key Terms

Chapter 2 The two-body problem

2.1 Introduction

2.2 Equations of motion in an inertial frame

2.3 Equations of relative motion

2.4 Angular momentum and the orbit formulas

2.5 The energy law

2.6 Circular orbits (e = 0)

2.7 Elliptical orbits (0 < e < 1)

2.8 Parabolic trajectories (e = 1)

2.9 Hyperbolic trajectories (e > 1)

2.10 Perifocal frame

2.11 The lagrange coefficients

2.12 Restricted three-body problem

2.12.1 Lagrange points

2.12.2 Jacobi constant

Problems

List of Key Terms

Chapter 3 Orbital position as a function of time

3.1 Introduction

3.2 Time since periapsis

3.3 Circular orbits (e = 0)

3.4 Elliptical orbits (e < 1)

3.5 Parabolic trajectories (e = 1)

3.6 Hyperbolic trajectories (e < 1)

3.7 Universal variables

Problems

List of Key Terms

Chapter 4 Orbits in three dimensions

4.1 Introduction

4.2 Geocentric right ascension-declination frame

4.3 State vector and the geocentric equatorial frame

4.4 Orbital elements and the state vector

4.5 Coordinate transformation

4.6 Transformation between geocentric equatorial and perifocal frames

4.7 Effects of the Earth’s oblateness

4.8 Ground tracks

Problems

List of Key Terms

Chapter 5 Preliminary orbit determination

5.1 Introduction

5.2 Gibbs method of orbit determination from three position vectors

5.3 Lambert’s problem

5.4 Sidereal time

5.5 Topocentric coordinate system

5.6 Topocentric equatorial coordinate system

5.7 Topocentric horizon coordinate system

5.8 Orbit determination from angle and range measurements

5.9 Angles only preliminary orbit determination

5.10 Gauss method of preliminary orbit determination

Problems

List of Key Terms

Chapter 6 Orbital maneuvers

6.1 Introduction

6.2 Impulsive maneuvers

6.3 Hohmann transfer

6.4 Bi-elliptic Hohmann transfer

6.5 Phasing maneuvers

6.6 Non-Hohmann transfers with a common apse line

6.7 Apse line rotation

6.8 Chase maneuvers

6.9 Plane change maneuvers

6.10 Nonimpulsive orbital maneuvers

Problems

List of Key Terms

Chapter 7 Relative motion and rendezvous

7.1 Introduction

7.2 Relative motion in orbit

7.3 Linearization of the equations of relative motion in orbit

7.4 Clohessy-Wiltshire equations

7.5 Two-impulse rendezvous maneuvers

7.6 Relative motion in close-proximity circular orbits

Problems

List of Key Terms

Chapter 8 Interplanetary trajectories

8.1 Introduction

8.2 Interplanetary Hohmann transfers

8.3 Rendezvous Opportunities

8.4 Sphere of influence

8.5 Method of patched conics

8.6 Planetary departure

8.7 Sensitivity analysis

8.8 Planetary rendezvous

8.9 Planetary flyby

8.10 Planetary ephemeris

8.11 Non-Hohmann interplanetary trajectories

Problems

List of Key Terms

Chapter 9 Rigid-body dynamics

9.1 Introduction

9.2 Kinematics

9.3 Equations of translational motion

9.4 Equations of rotational motion

9.5 Moments of inertia

9.5.1 Parallel axis theorem

9.6 Euler’s equations

9.7 Kinetic energy

9.8 The spinning top

9.9 Euler angles

9.10 Yaw, pitch and roll angles

9.11 Quaternions

Problems

List of Key Terms

Chapter 10 Satellite attitude dynamics

10.1 Introduction

10.2 Torque-free motion

10.3 Stability of torque-free motion

10.4 Dual-spin spacecraft

10.5 Nutation damper

10.6 Coning maneuver

10.7 Attitude control thrusters

10.8 Yo-yo despin mechanism

10.8.1 Radial release

10.9 Gyroscopic attitude control

10.10 Gravity gradient stabilization

Problems

List of Key Terms

Chapter 11 Rocket vehicle dynamics

11.1 Introduction

11.2 Equations of motion

11.3 The thrust equation

11.4 Rocket performance

11.5 Restricted staging in field-free space

11.6 Optimal staging

11.6.1 Lagrange multiplier

Problems

List of Key Terms

Appendix A Physical data

Appendix B A road map

Appendix C Numerical intergration of the n-body equations of motion

Appendix D MATLAB® algorithms

Appendix E Gravitational potential energy of a sphere

References

Index







Description


Preface

Acknowledgments

Chapter 1 Dynamics of point masses

1.1 Introduction

1.2 Vectors

1.3 Kinematics

1.4 Mass, force and Newton’s law of gravitation

1.5 Newton’s law of motion

1.6 Time derivatives of moving vectors

1.7 Relative motion

1.8 Numerical integration

1.8.1 Runge-Kutta methods

1.8.2 Heun’s Predictor-Corrector method

1.8.3 Runge-Kutta with variable step size

Problems

List of Key Terms

Chapter 2 The two-body problem

2.1 Introduction

2.2 Equations of motion in an inertial frame

2.3 Equations of relative motion

2.4 Angular momentum and the orbit formulas

2.5 The energy law

2.6 Circular orbits (e = 0)

2.7 Elliptical orbits (0 < e < 1)

2.8 Parabolic trajectories (e = 1)

2.9 Hyperbolic trajectories (e > 1)

2.10 Perifocal frame

2.11 The lagrange coefficients

2.12 Restricted three-body problem

2.12.1 Lagrange points

2.12.2 Jacobi constant

Problems

List of Key Terms

Chapter 3 Orbital position as a function of time

3.1 Introduction

3.2 Time since periapsis

3.3 Circular orbits (e = 0)

3.4 Elliptical orbits (e < 1)

3.5 Parabolic trajectories (e = 1)

3.6 Hyperbolic trajectories (e < 1)

3.7 Universal variables

Problems

List of Key Terms

Chapter 4 Orbits in three dimensions

4.1 Introduction

4.2 Geocentric right ascension-declination frame

4.3 State vector and the geocentric equatorial frame

4.4 Orbital elements and the state vector

4.5 Coordinate transformation

4.6 Transformation between geocentric equatorial and perifocal frames

4.7 Effects of the Earth’s oblateness

4.8 Ground tracks

Problems

List of Key Terms

Chapter 5 Preliminary orbit determination

5.1 Introduction

5.2 Gibbs method of orbit determination from three position vectors

5.3 Lambert’s problem

5.4 Sidereal time

5.5 Topocentric coordinate system

5.6 Topocentric equatorial coordinate system

5.7 Topocentric horizon coordinate system

5.8 Orbit determination from angle and range measurements

5.9 Angles only preliminary orbit determination

5.10 Gauss method of preliminary orbit determination

Problems

List of Key Terms

Chapter 6 Orbital maneuvers

6.1 Introduction

6.2 Impulsive maneuvers

6.3 Hohmann transfer

6.4 Bi-elliptic Hohmann transfer

6.5 Phasing maneuvers

6.6 Non-Hohmann transfers with a common apse line

6.7 Apse line rotation

6.8 Chase maneuvers

6.9 Plane change maneuvers

6.10 Nonimpulsive orbital maneuvers

Problems

List of Key Terms

Chapter 7 Relative motion and rendezvous

7.1 Introduction

7.2 Relative motion in orbit

7.3 Linearization of the equations of relative motion in orbit

7.4 Clohessy-Wiltshire equations

7.5 Two-impulse rendezvous maneuvers

7.6 Relative motion in close-proximity circular orbits

Problems

List of Key Terms

Chapter 8 Interplanetary trajectories

8.1 Introduction

8.2 Interplanetary Hohmann transfers

8.3 Rendezvous Opportunities

8.4 Sphere of influence

8.5 Method of patched conics

8.6 Planetary departure

8.7 Sensitivity analysis

8.8 Planetary rendezvous

8.9 Planetary flyby

8.10 Planetary ephemeris

8.11 Non-Hohmann interplanetary trajectories

Problems

List of Key Terms

Chapter 9 Rigid-body dynamics

9.1 Introduction

9.2 Kinematics

9.3 Equations of translational motion

9.4 Equations of rotational motion

9.5 Moments of inertia

9.5.1 Parallel axis theorem

9.6 Euler’s equations

9.7 Kinetic energy

9.8 The spinning top

9.9 Euler angles

9.10 Yaw, pitch and roll angles

9.11 Quaternions

Problems

List of Key Terms

Chapter 10 Satellite attitude dynamics

10.1 Introduction

10.2 Torque-free motion

10.3 Stability of torque-free motion

10.4 Dual-spin spacecraft

10.5 Nutation damper

10.6 Coning maneuver

10.7 Attitude control thrusters

10.8 Yo-yo despin mechanism

10.8.1 Radial release

10.9 Gyroscopic attitude control

10.10 Gravity gradient stabilization

Problems

List of Key Terms

Chapter 11 Rocket vehicle dynamics

11.1 Introduction

11.2 Equations of motion

11.3 The thrust equation

11.4 Rocket performance

11.5 Restricted staging in field-free space

11.6 Optimal staging

11.6.1 Lagrange multiplier

Problems

List of Key Terms

Appendix A Physical data

Appendix B A road map

Appendix C Numerical intergration of the n-body equations of motion

Appendix D MATLAB® algorithms

Appendix E Gravitational potential energy of a sphere

References

Index






Key Features

  • NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions
  • NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10
  • New examples and homework problems

Readership

Undergraduate students in aerospace, astronautical, mechanical engineering and engineering physics. Related professional aerospace and space engineering fields.


Details

No. of pages:
744
Language:
English
Copyright:
© Butterworth-Heinemann 2010
Published:
Imprint:
Butterworth-Heinemann
eBook ISBN:
9780080887845
Hardcover ISBN:
9780123747785

About the Authors

Howard Curtis Author

Affiliations and Expertise

Professor Emeritus, Aerospace Engineering, Embry-Riddle Aeronautical University, Florida, USA