Key Features

  • New chapter on orbital perturbations
  • New and revised examples and homework problems
  • Increased coverage of attitude dynamics, including new MATLAB algorithms and examples

Readership

Undergraduate students in aerospace, astronautical, mechanical engineering, and engineering physics; related professional aerospace and space engineering fields.

Table of Contents

Dedication

Preface

Supplements to the text

Acknowledgements

Chapter 1. Dynamics of Point Masses

Abstract

1.1 Introduction

1.2 Vectors

1.3 Kinematics

1.4 Mass, force, and Newton’s law of gravitation

1.5 Newton’s law of motion

1.6 Time derivatives of moving vectors

1.7 Relative motion

1.8 Numerical integration

Problems

Section 1.3

Section 1.4

Section 1.5

Section 1.6

Section 1.7

Section 1.8

Chapter 2. The Two-Body Problem

Abstract

2.1 Introduction

2.2 Equations of motion in an inertial frame

2.3 Equations of relative motion

2.4 Angular momentum and the orbit formulas

2.5 The energy law

2.6 Circular orbits (e = 0)

2.7 Elliptical orbits (0 < e < 1)

2.8 Parabolic trajectories (e = 1)

2.9 Hyperbolic trajectories (e > 1)

2.10 Perifocal frame

2.11 The Lagrange coefficients

2.12 Restricted three-body problem

Problems

Section 2.2

Section 2.3

Section 2.4

Section 2.5

Section 2.6

Section 2.7

Section 2.8

Section 2.9

Section 2.11

Section 2.12

Chapter 3. Orbital Position as a Function of Time

Abstract

3.1 Introduction

3.2 Time since periapsis

3.3 Circular orbits (e = 0)

3.4 Elliptical orbits (e < 1)

3.5 Parabolic trajectories (e = 1)

3.6 Hyperbolic trajectories (e > 1)

3.7 Universal variables

Problems

Section 3.4

Section 3.5

Section 3.6

Section 3.7

Chapter 4. Orbits in Three Dimensions

Abstract

4.1 In

Details

No. of pages:
768
Language:
English
Copyright:
© 2014
Published:
Imprint:
Butterworth-Heinemann
Print ISBN:
9780080977478
Electronic ISBN:
9780080977485