COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Optimum-Path Forest - 1st Edition - ISBN: 9780128226889

Optimum-Path Forest

1st Edition

Theory, Algorithms and Applications

Editors: Alexandre Xavier Falcao João Papa
Paperback ISBN: 9780128226889
Imprint: Academic Press
Published Date: 1st February 2022
Page Count: 200
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Optimum-Path Forest: Theory, Algorithms and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions.

Key Features

  • Presents the first book on Optimum-path Forest
  • Shows how it can be used with Deep Learning
  • Gives a wide range of applications
  • Includes the methods, underlying theory and applications of Optimum-Path Forest (OPF)


Engineers and computer scientists working with machine and deep learning methods

Table of Contents

1. Introduction
2. Theoretical Background and Related Works
3. Real-time application of OPF-based classifier in Snort IDS
4. Optimum-Path Forest and Active Learning Approaches for Content-Based Medical Image Retrieval
5. Hybrid and Modified OPFs for Intrusion Detection Systems and Large-Scale Problems
6. Detecting Atherosclerotic Plaque Calcifications of the Carotid Artery Through Optimum-Path Forest
7. Learning to Weight Similarity Measures with Siamese Networks: A Case Study on Optimum-Path Forest
8. AnIterative Optimum-Path Forest Framework for Clustering
9. Future Trends in Optimum-Path Forest Classification


No. of pages:
© Academic Press 2022
1st February 2022
Academic Press
Paperback ISBN:

About the Editors

Alexandre Xavier Falcao

Alexandre Xavier Falcao is a full professor at the Institute of Computing (IC), University of Campinas (Unicamp), where he has worked since 1998. He attended the Federal University of Pernambuco from 1984-1988, where he got a B.Sc. in Electrical Engineering. He then attended Unicamp, where he got an M.Sc. (1993), and a Ph.D. (1996), in Electrical Engineering, by working on volumetric data visualization and medical image segmentation. During his Ph.D., he worked with the Medical Image Processing Group at the University of Pennsylvania from 1994-1996. In 2011-2012, he spent a one-year sabbatical at the Robert W. Holley Center for Agriculture and Health (USDA, Cornell University), working on image analysis applied to plant biology. He served as Associate Director of IC-Unicamp (2006-2007), Coordinator of its Post-Graduation Program (2009-2011), and Senior Area Editor of IEEE Signal Processing Letters (2016-2020). He is currently a top level research fellow at the for the Brazilian National Council for Scientific and Technological Development (CNPq), President of the Special Commission of Computer Graphics and Image Processing (CEGRAPI) for the Brazilian Computer Society (SBC), and Area Coordinator of Computer Science for the Sao Paulo Research Foundation (FAPESP). Among the several awards he received over the years, it is worth mentioning three Unicamp inventor awards at the category "License Technology" (2011, 2012, and 2020), three awards of academic excellence (2006, 2011, 2016) from IC-Unicamp, one award of academic recognition "Zeferino Vaz" from Unicamp (2014), and the best paper award in the year of 2012 from the journal Pattern Recognition (received at Stockholm, Sweden, during the conference ICPR 2014). His research work aims at computational models to learn and interpret the semantic content of images in the domain of several applications. The areas of interest include image and video processing, data visualization, medical image analysis, remote sensing, graph algorithms, image annotation, organization, and retrieval, and (interactive) machine learning and pattern recognition.

Affiliations and Expertise

Professor, Institute of Computing (IC), University of Campinas (Unicamp), Brazil

João Papa

João Papa

Joao Paulo Papa obtained his Ph.D. in Computer Science from University of Campinas, Brazil, in 2008, and was a visiting scholar at Harvard University from 2014-2015. He has been a Professor at Sao Paulo State University (UNESP), Brazil, since 2009, and his main interests include image processing, machine learning and meta-heuristic optimization.

Affiliations and Expertise

Assistant Professor, Sao Paulo State University (UNESP), Brazil; Visiting scholar, Harvard University, Cambridge, MA, USA

Ratings and Reviews