Operators and Representation Theory - 1st Edition - ISBN: 9780444703217, 9780080872582

Operators and Representation Theory, Volume 147

1st Edition

Canonical Models for Algebras of Operators Arising in Quantum Mechanics

Authors: P.E.T. Jorgensen
Hardcover ISBN: 9780444703217
eBook ISBN: 9780080872582
Imprint: North Holland
Published Date: 1st December 1987
Page Count: 336
Tax/VAT will be calculated at check-out
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access

Table of Contents

Background Material. 1. Introduction and Overview. 2. Definitions and Terminology. 3. Operators in Hilbert Space. 4. The Imprimitivity Theorem. Algebras of Operators on Hilbert Space. 5. Domains of Representations. 6. Operators in the Enveloping Algebra. 7. Spectral Theory. Covariant Representations and Connections. 8. Infinite-Dimensional Lie Algebras. Appendix: Integrability of Lie Algebras. Bibliography. Index.


Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.

This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly elegant manner by the use of Lie algebras, extensions, and projective representations. In several cases, this Lie algebraic approach to questions in mathematical physics and C*-algebra theory is new; for example, the Lie algebraic treatment of the spectral theory of curved magnetic field Hamiltonians, the treatment of irrational rotation type algebras, and the Virasoro algebra.

Also examined are C*-algebraic methods used (in non-traditional ways) in the study of representations of infinite-dimensional Lie algebras and their extensions, and the methods developed by A. Connes and M.A. Rieffel for the study of the Yang-Mills problem.

Cutting across traditional separations between fields of specialization, the book addresses a broad audience of graduate students and researchers.


No. of pages:
© North Holland 1988
North Holland
eBook ISBN:

About the Authors

P.E.T. Jorgensen Author