# Op Amps for Everyone

## 4th Edition

**Author:**Bruce Carter

**Paperback ISBN:**9780123914958

**eBook ISBN:**9780123944061

**Imprint:**Newnes

**Published Date:**31st December 2012

**Page Count:**304

## Description

*Op Amps for Everyone* is an indispensable guide and reference for designing circuits that are reliable, have low power consumption, and are as small and low-cost as possible. Operational amplifiers are essential in modern electronics design, and are used in medical devices, communications technology, optical networks, and sensor interfacing.

This book is informed by the authors' years of experience, wisdom and expertise, giving engineers all the methods, techniques and tricks that they need to optimize their analog electronic designs.

**With this book you will learn: **

- Single op amp designs that get the most out of every amplifier
- Which specifications are of most importance to your design, enabling you to narrow down the list of amplifiers to those few that are most suitable
- Strategies for making simple "tweaks" to the design – changes that are often apparent once a prototype has been constructed
- How to design for hostile environments – extreme temperatures, high levels of shock, vibration, and radiation – by knowing what circuit parameters are likely to degrade and how to counteract that degradation

**New to this edition:**

- Unified design procedures for gain and offset circuits, and filter circuits
- Techniques for voltage regulator design
- Inclusion of design utilities for filter design, gain and offset, and voltage regulation
- Analysis of manufacturer design aids
- Companion website with downloadable material

## Key Features

- A complete, cookbook-style guide for designing and building analog circuits
- A multitude of workable designs that are ready to use, based on real-world component values from leading manufacturers using readily available components
- A treasure trove of practical wisdom: strategies to tweak a design; guidelines for developing the entire signal chain; designing for hostile environments, and more

## Readership

Electronic engineers and designers, electronics technicians, engineering students and electronics hobbyists.

## Table of Contents

List of Figures

List of Tables

List of Abbreviations

Chapter 1. The Op Amp’s Place in the World

1.1 An Unbounded Gain Problem

1.2 The Solution

1.3 The Birth of the Op Amp as a Component

Reference

Chapter 2. Review of Op Amp Basics

2.1 Introduction

2.2 Basic Concepts

2.3 Basic Op Amp Circuits

2.4 Not So Fast!

Chapter 3. Separating and Managing AC and DC Gain

3.1 A Small Complication

3.2 Single Supply versus Dual Supply

3.3 Simultaneous Equations

3.4 So, Where to Now?

3.5 A Design Procedure, and a Design Aid

3.6 Summary

Chapter 4. Different Types of Op Amps

4.1 Voltage Feedback Op Amps

4.2 Uncompensated/Undercompensated Voltage Feedback Op Amps

4.3 Current Feedback Op Amps

4.4 Fully Differential Op Amps

4.5 Instrumentation Amplifier

4.6 Difference Amplifier

4.7 Buffer Amplifiers

4.8 Other Types of Op Amps

Chapter 5. Interfacing a Transducer to an Analog-to-Digital Converter

5.1 Introduction

5.2 System Information

5.3 Power Supply Information

5.4 Input Signal Characteristics

5.5 Analog-to-Digital Converter Characteristics

5.6 Interface Characteristics

5.7 Architectural Decisions

5.8 Conclusions

Chapter 6. Active Filter Design Techniques

6.1 Introduction

6.2 The Transfer Equation Method

6.3 Fast, Practical Filter Design

6.4 High-Speed Filter Design

6.5 Getting the Most Out of a Single Op Amp

6.6 Biquad Filters

6.7 Design Aids

6.8 Summary

Chapter 7. Using Op Amps for Radio frequency Design

7.1 Introduction

7.2 Voltage Feedback or Current Feedback?

7.3 Radio frequency Amplifier Topology

7.4 Op Amp Parameters for Radio frequency Designers

7.5 Wireless Systems

7.6 High-Speed Analog Input Drive Circuits

7.7 Conclusions

Chapter 8. Designing Low-Voltage Op Amp Circuits

8.1 Introduction

8.2 Critical Specifications

8.3 Summary

Chapter 9. Extreme Applications

9.1 Introduction

9.2 Temperature

9.3 Packaging

9.4 When Failure Is Not an Option

9.5 When It Has to Work for a Really Long Time

9.6 Conclusions

Chapter 10. Voltage Regulation

10.1 Introduction

10.2 Regulator Cases

10.3 Make or Buy?

10.4 Linear Regulators

10.5 Switching Power Supplies

10.6 A Companion Circuit

10.7 Another Companion Circuit

10.8 Design Aid

10.9 Conclusions

Chapter 11. Other Applications

11.1 Introduction

11.2 Interfacing Digital-to-Analog Converters to Loads

11.3 Op Amp Oscillators

11.4 Hybrid Amplifiers and Power Boosters

11.5 Conclusions

Chapter 12. Manufacturer Design Aids

12.1 Introduction

12.2 Texas Instruments Tina-TI

12.3 Texas Instruments Filter Pro

12.4 National Semiconductor/Texas Instruments Webench

12.5 Analog Devices Version of NI Multisim

12.6 Analog Devices OpAmp Error Budget

12.7 Linear Technology LT Spice

12.8 Printed Circuit Board Layout

12.9 Conclusions

Chapter 13. Common Application Mistakes

13.1 Introduction

13.2 Op Amp Operated at Less Than Unity (or Specified) Gain

13.3 Op Amp Used as a Comparator

13.4 Improper Termination of Unused Sections

13.5 DC Gain

13.6 Current Feedback Amplifier Mistakes

13.7 Fully Differential Amplifier Mistakes

13.8 Improper Decoupling

13.9 Conclusions

Appendix A. Understanding Op Amp Parameters

A.1 Introduction

A.2 Temperature Coefficient of the Input Offset Current (αIIO)

A.3 Temperature Coefficient of the Input Offset Voltage (αVIO or αVIO)

A.4 Differential Gain Error (AD)

A.5 Gain Margin Parameter (Am)

A.6 Open-Loop Voltage Gain Parameter (AOL)

A.7 Large-Signal Voltage Amplification Gain Condition (AV)

A.8 Differential Large-Signal Voltage Amplification Parameter (AVD)

A.9 Unity Gain Bandwidth Parameter (B1)

A.10 Maximum-Output-Swing Bandwidth Parameter (BOM)

A.11 Bandwidth Condition (BW)

A.12 Input Capacitance Parameter (Ci)

A.13 Common-Mode Input Capacitance Parameter (Cic or Ci(c))

A.14 Differential Input Capacitance Parameter (Cid)

A.15 Load Capacitance Condition (CL)

A.16 Supply Voltage Sensitivity (ΔVDD±(or CC±)/ΔVIO, or kSVR, or PSRR)

A.17 Common-Mode Rejection Ratio Parameter (CMRR or kCMR)

A.18 Frequency Condition (f)

A.19 Op Amp Gain Bandwidth Product Parameter (GBW)

A.20 Supply Current (Shutdown) Parameter (ICC(SHDN) or IDD(SHDN))

A.21 Supply Current Parameter (ICC or IDD)

A.22 Input Current Range Parameter (II)

A.23 Input Bias Current Parameter (IIB)

A.24 Input Offset Current Parameter (IIO)

A.25 Input Noise Current Parameter (In)

A.26 Output Current Parameter (IO)

A.27 Low-Level Output Current Condition (IOL)

A.28 Short-Circuit Output Current Parameters (IOS or ISC)

A.29 Supply Rejection Ratio Parameter (kSVR)

A.30 Power Dissipation Parameter (PD)

A.31 Power Supply Rejection Ratio Parameter (PSRR)

A.32 Junction to Ambient Thermal Resistance Parameter (θJA)

A.33 Junction to Case Thermal Resistance Parameter (θJC)

A.34 Input Resistance Parameter (ri)

A.35 Differential Input Resistance Parameter (rid or ri(d))

A.36 Load Resistance Condition (RL)

A.37 Null Resistance Condition (RL)

A.38 Output Resistance Parameter (ro)

A.39 Signal Source Condition (RS)

A.40 Open-Loop Transresistance Parameters (Rt)

A.41 Op Amp Slew Rate Parameter (SR)

A.42 Operating Free-Air Temperature Condition (TA)

A.43 Turn-Off Time (Shutdown) Parameter (tDIS or t(off))

A.44 Turn-On Time (Shutdown) Parameters (tEN)

A.45 Fall Time Parameter (tf)

A.46 Total Harmonic Distortion Parameter (THD)

A.47 Total Harmonic Distortion Plus Noise Parameter (THD+N)

A.48 Maximum Junction Temperature Parameter (TJ)

A.49 Rise Time Parameter (tr)

A.50 Settling Time Parameter (ts)

A.51 Storage Temperature Parameter (TS or Tstg)

A.52 Supply Voltage Condition (VCC or VDD)

A.53 Input Voltage Range Condition or Parameter (VI)

A.54 Common-Mode Input Voltage Condition (Vic)

A.55 Common-Mode Input Voltage Range Parameter (VICR)

A.56 Differential Input Voltage Parameter (VID)

A.57 Differential Input Voltage Range Parameter (VDIR)

A.58 Turn-On Voltage (Shutdown) Parameter (VIH-SHDN or V(ON))

A.59 Turn-Off Voltage (Shutdown) Parameters (VIL-SHDN or V(OFF))

A.60 Input Voltage Condition (VIN)

A.61 Input Offset Voltage Parameter (VIO or VOS)

A.62 Equivalent Input Noise Voltage Parameter (Vn)

A.63 High-Level Output Voltage Condition or Parameter (VOH)

A.64 Low-Level Output Voltage Condition or Parameter (VOL)

A.65 Maximum Peak-to-Peak Output Voltage Swing Parameter (VOM±)

A.66 Peak-to-Peak Output Voltage Swing Condition or Parameter (VO(PP))

A.67 Step Voltage Peak-to-Peak Condition (V(STEP)PP)

A.68 Crosstalk Parameter (XT)

A.69 Output Impedance Parameter (Zo)

A.70 Open-Loop Transimpedance Parameter (Zt)

A.71 Differential Phase Error Parameter (ΦD)

A.72 Phase Margin Parameter (Φm)

A.73 Bandwidth for 0.1dB Flatness

A.74 Case Temperature for 60 Seconds

A.75 Continuous Total Dissipation Parameter

A.76 Duration of Short-Circuit Current

A.77 Input Offset Voltage Long-Term Drift Parameter

A.78 Lead Temperature for 10 or 60 Seconds

Appendix B. Op Amp Noise Theory

B.1 Introduction

B.2 Characterization

B.3 Noise Colors

B.4 Op Amp Noise

B.5 Putting It All Together

B.6 Design Aid: Noise Calculation Spreadsheet

Appendix C. Circuit Board Layout Techniques

C.1 General Considerations

C.2 Printed Circuit Board Mechanical Construction

C.3 Grounding

C.4 Frequency Characteristics of Passive Components

C.5 Decoupling

C.6 Input and Output Isolation

C.7 Packages

C.8 Summary

Appendix D. Op Amp Circuit Collection

D.1 Introduction

D.2 Simulated Inductor

D.3 Constant Current Generator

D.4 Inverted Voltage Reference

D.5 Absolute Value

D.6 Precision Rectifier

D.7 AC to DC Converter

D.8 Full Wave Rectifier

D.9 Tone Control

D.10 Curve-Fitting Filters

## Details

- No. of pages:
- 304

- Language:
- English

- Copyright:
- © Newnes 2013

- Published:
- 31st December 2012

- Imprint:
- Newnes

- Paperback ISBN:
- 9780123914958

- eBook ISBN:
- 9780123944061

## About the Author

### Bruce Carter

Bruce Carter holds dual degrees, Engineering Physics from Texas Tech University, and Electrical Engineering at the University of Texas. He has over 30 years of experience in analog design for military and oil field service companies. He was an applications engineer at Texas Instruments for 9 years, where he authored application notes, contributed articles, and knowledge base FAQ's.

### Affiliations and Expertise

Analog Signal Chain and Power Supply Specialist, Weatherford International, Texas, USA