Nutrient Delivery - 1st Edition - ISBN: 9780128043042, 9780128043752

Nutrient Delivery

1st Edition

Editors: Alexandru Grumezescu
eBook ISBN: 9780128043752
Hardcover ISBN: 9780128043042
Imprint: Academic Press
Published Date: 2nd September 2016
Page Count: 850
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
215.41
150.79
150.79
150.79
150.79
150.79
172.33
172.33
200.00
140.00
140.00
140.00
140.00
140.00
160.00
160.00
143.00
100.10
100.10
100.10
100.10
100.10
114.40
114.40
125.00
87.50
87.50
87.50
87.50
87.50
100.00
100.00
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Nutrient Delivery
2. Nanostructured bio-based systems for nutrient delivery
3. Nano-scale nutrient delivery systems
4. Engineering effective nano-scale nutrient carriers: From Pickering emulsions to casein micelles
5. Nanotechnology applied to improve functionality in food
6. Nutrient delivery using nanotechnology. Design and applications in dairy food
7. Food‐derived Biomaterials for Nutrient Delivery
8. Applications of nanomaterials in functional fortified dairy products: Benefits and implications for human health
9. Controlled release nutrition delivery based intelligent and targeted nanoparticle
10. Nanodelivery of nutrients for improved bioavailability
11. Nanotechnology for enhanced bioactivity of phytomolecules
12. Vitamin and mineral fortification using nanotechnology: bioavailability and rda
13. Biological Functionalization of Non-biological Nanoparticles
14. Phenolic compounds: encapsulation techniques and recent applications in food industry and nutrition fields
15. Use of nanotechnology in enhancing bioavailability and delivery of dietary factors
16. Enhanced Nutrient Delivery through Nano encapsulation: The current trend in Food Industry
17. Nutrient delivery through Nanoencapsulation | Nanotechnology in delivery of vitamins and iron
18. Colloidal systems: an excellent carrier for nutrient delivery
19. Supplementing selenium and zinc nanoparticles in ruminants for improving their bioavailability in the meat
20. Lipids from oleaginous yeasts: production and encapsulation


Description

Nutrient Delivery: Nanotechnology in the Agri-Food Industry, Volume Five, discusses the fabrication, merits, demerits, applications, and bioavailability enhancement mechanisms of various nanodelivery systems. Recent developments in various nanodelivery systems are also highlighted. Volume 5 contains twenty chapters, prepared by outstanding international researchers from Argentina, Brazil, Canada, China, Croatia, India, Iran, Ireland, México, Pakistan, Portugal, Serbia, Sri Lanka, and the United States.

In recent years, the delivery of micronutrients at nanoscale has been widely studied as these systems have the potential to improve bioavailability, enable controlled release and enhance stability of food bioactives to a greater extent. The nanodelivery systems typically consist of the food bioactive compound encapsulated and stabilized in food grade ingredients such as lipids, proteins or polysaccharides with diameters ranging from 10 nm to 1000 nm. Among these, the lipid based delivery systems such as nanoemulsions, solid lipid nanoparticles, nanoliposomes and micelles are widely studied for the delivery of lipophilic bioactive compounds. These delivery vehicles improve the solubility, permeability, stability and bioavailability of the lipophilic compounds thereby enhancing their potential for oral delivery and functional food development.

On the other hand, the hydrophilic bioactives are delivered through protein, polysaccharide or biopolymer based colloidal nanosystems such as hydrogels, nanogels and polymer nanoparticles. The major concern other than solubility is the intestinal permeability of the micronutrients. For instance, the delivery system for compounds with poor intestinal permeability and low solubility need to be carefully designed using suitable lipids and surfactants.

Key Features

  • Offers updated material for undergraduate and postgraduate students in food science, biotechnology, and related engineering fields
  • Provides a valuable resource of recent scientific progress, along with most known applications of nanomaterials in the food industry for researchers, engineers, and academics
  • Includes novel opportunities and ideas for developing or improving technologies in the food industry

Readership

Researchers, professionals and students in food science and in biotechnological and engineering fields


Details

No. of pages:
850
Language:
English
Copyright:
© Academic Press 2017
Published:
Imprint:
Academic Press
eBook ISBN:
9780128043752
Hardcover ISBN:
9780128043042

About the Editors

Alexandru Grumezescu Editor

Dr. Alexandru Mihai Grumezescu is Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science, with a second affiliation to the Faculty of Medical Engineering, at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano and biostructures, and he is the Editor-in-Chief of three journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr. Grumezescu has published 150 peer-reviewed papers, 20 book chapters, 8 co-authored books and 21 edited books. He has developed two new research directions related to bio-applications of metal oxide nanoparticles: (i) functional metal oxide nanostructures to improve the delivery of antimicrobials in active form with a high efficiency against Gram-positive and Gram-negative bacteria; and (ii) smart metal oxide nanostructures, functionalized with different fatty acids, essential oils or in combination with organic polymers, to inhibit bacterial colonization of different medical or industrial surfaces. Dr Alexandru Mihai Grumezescu is also Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano- and biostructures, and he is the Editor-in-Chief of four journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr Grumezescu has published 160 peer-reviewed papers, 20 book chapters, 9 coauthored books, and 21 edited books. Other details are available at http://grumezescu.com/.

Affiliations and Expertise

Assistant Professor, Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science and Faculty of Medical Engineering, Politehnica University of Bucharest, Romania