Numerical Simulation of Non-Newtonian Flow

Numerical Simulation of Non-Newtonian Flow

1st Edition - February 1, 1984

Write a review

  • Authors: M.J. Crochet, A.R. Davies, K. Walters
  • eBook ISBN: 9780444598554

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.

Table of Contents


  • Preface

    Section 1 : Non-Newtonian Fluid Mechanics

    1. General Introduction

    1.1 Introduction

    1.2 Rheometrical Properties of Non-Newtonian Fluids

    1.3 Non-Newtonian Flow in Complex Geometries

    1.4 The Role of Non-Newtonian Fluid Mechanics

    2. Basic Equations

    2.1 Introduction

    2.2 Field Equations

    2.3 Navier Stokes Equations

    2.4 Rheological Equations of State. Formulation Principles

    2.5 The Simple Fluid

    2.6 Approximate Constitutive Equations

    2.7 A Pragmatic Approach to Constitutive Equations

    2.8 Constraints on Rheological Equations of State

    2.9 Boundary Conditions

    Appendix I

    3. Flow Classification

    3.1 Introduction

    3.2 Flows Dominated by Shear Viscosity

    3.3 Slow Flow (Slightly Elastic Liquids)

    3.4 Small-Deformation Flows

    3.5 Nearly-Viscometric Flows

    3.6 Highly Elastic Liquids Flowing in Complex Geometries

    3.7 General Comments Concerning Flows Involving Abrupt Changes in Geometry

    3.8 Some Remarks on Non-Dimensional Parameters

    3.9 Basic Equations for the Flow of a Maxwell Fluid

    4. An Overview of Numerical Simulation

    4.1 Introduction

    4.2 Step 1 : Formulating the Governing Equations and Boundary Conditions

    4.3 Step 2 : Time Discretization

    4.4 Step 3 : Space Discretization

    4.5 Step 4 : Linearization

    4.6 Step 5 : Solution of the Linearization Equation

    4.7 Step 6 : Termination of the Nonlinear Iteration Loop

    Section 2 : Finite Difference Techniques

    5. Introduction to Finite Differences

    5.1 Boundary Value Problems in One and Two Space Dimensions

    5.2 Finite Difference Solution of Two-Point Boundary Value Problems: The Linear Case

    5.3 Finite Difference Solution of Two-Point Boundary Value Problems: The Nonlinear Case

    5.4 Finite Difference Solution of Elliptic Boundary Value Problems: Poisson's Equation

    6. Finite Difference Simulation : Differential Models

    6.1 Introduction

    6.2 Discretization

    6.3 Solution of Linear Equations

    6.4 Solution of Coupled Systems

    6.5 Examples

    6.6 Miscellaneous Topics

    7. Finite Difference Simulation ; Time Dependence

    7.1 Introduction

    7.2 Unsteady Flows

    7.3 Integral Constitutive Models

    Section 3 : Finite Element Techniques

    8. Introduction to Finite Elements

    8.1 Introduction

    8.2 Finite Element Representation

    8.3 The Finite Element Method

    8.4 Method of Weighted Residuals

    8.5 Construction of the Algebraic System

    8.6 Solution of the Algebraic System

    8.7 Examples

    8.8 Two-Dimensional Problems. Triangular and Rectangular Elements

    8.9 Isoparametric Elements

    8.10 Method of Weighted Residuals

    8.11 Numerical Integration

    8.12 Example. Convergence of the Finite Element Method

    9. Finite Element Calculation of Generalized Newtonian Flow

    9.1 Introduction

    9.2 A Variational Theorem for Creeping Generalized Newtonian Flow

    9.3 Galerkin Formulation of the Equations of Motion; Plane Flow

    9.4 Galerkin Formulation of the Equations of Motion; Axisymmetric Flow

    9.5 Finite Elements for Solving the Navier-Stokes Equations

    9.6 Penalty Formulation for Solving the Navier-Stokes Equations

    9.7 Calculation of the Stream Function

    9.8 Solving the Generalized Newtonian Flow

    9.9 Entry Flow in a Tubular Contraction

    9.10 Die Swell of a Generalized Newtonian Fluid

    9.11 The Flow of a Power-Law Fluid Around a Sphere

    10. Finite Element Calculation of Viscoelastic Flow

    10.1 Introduction

    10.2 Another Variational Theorem for Creeping Newtonian Flow

    10.3 A Mixed Method for Solving the Stokes Equations

    10.4 A Mixed Method for Solving the Flow of a Maxwell Fluid (MIX1)

    10.5 A Second Mixed Method for Solving the Flow of a Maxwell Fluid (MIX2, MIX3)

    10.6 Axisymmetric Flow

    10.7 Problems with the Mixed Methods

    10.8 The Oldroyd-B Fluid and Related Models

    10.9 A Third Method for Solving the Flow of a Maxwell Fluid (MIX4)

    10.10 The Flow of Viscoelastic Fluids of the Integral Type

    10.11 Example of the General Development - Entry Flow in a Tubular Contraction

    10.12 Example of the General Development - Die Swell of a Viscoelastic Fluid

    10.13 Related Problems

    Section 4 : Epilogue

    11. Outstanding Problems. Future Trends

    11.1 General

    11.2 Numerical Simulation Breakdown

    11.3 Possible Reasons for Breakdown : An Evaluation

    11.4 Concluding Remarks

    References

    Author Index

    Subject Index

Product details

  • Language: English
  • Copyright: © Elsevier Science 1984
  • Published: February 1, 1984
  • Imprint: Elsevier Science
  • eBook ISBN: 9780444598554

About the Authors

M.J. Crochet

A.R. Davies

K. Walters

Affiliations and Expertise

University of Wales, Aberystwyth, UK

Ratings and Reviews

Write a review

There are currently no reviews for "Numerical Simulation of Non-Newtonian Flow"