Numerical Linear Algebra with Applications

1st Edition


Authors: William Ford
Hardcover ISBN: 9780123944351
eBook ISBN: 9780123947840
Imprint: Academic Press
Published Date: 2nd September 2014
Page Count: 628
129.04 + applicable tax
93.95 + applicable tax
75.00 + applicable tax
119.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, Numerical Linear Algebra with Applications contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science.

With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. It provides necessary mathematical background information for those who want to learn to solve linear algebra problems, and offers a thorough explanation of the issues and methods for practical computing, using MATLAB as the vehicle for computation. The proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs.

Key Features

  • Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra
  • Detailed explanations and examples
  • A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra
  • Examples from engineering and science applications


Graduate or advanced undergraduate students in engineering, science, and mathematics, professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica.

Table of Contents

  • Dedication
  • List of Figures
  • List of Algorithms
  • Preface

    • Topics
    • Intended Audience
    • Ways to Use the Book
    • Matlab Library
    • Supplement
    • Acknowledgments
  • Chapter 1: Matrices

    • Abstract
    • 1.1 Matrix Arithmetic
    • 1.2 Linear Transformations
    • 1.3 Powers of Matrices
    • 1.4 Nonsingular Matrices
    • 1.5 The Matrix Transpose and Symmetric Matrices
    • 1.6 Chapter Summary
    • 1.7 Problems
  • Chapter 2: Linear Equations

    • Abstract
    • 2.1 Introduction to Linear Equations
    • 2.2 Solving Square Linear Systems
    • 2.3 Gaussian Elimination
    • 2.4 Systematic Solution of Linear Systems
    • 2.5 Computing the Inverse
    • 2.6 Homogeneous Systems
    • 2.7 Application: A Truss
    • 2.8 Application: Electrical Circuit
    • 2.9 Chapter Summary
    • 2.10 Problems
  • Chapter 3: Subspaces

    • Abstract
    • 3.1 Introduction
    • 3.2 Subspaces of n
    • 3.3 Linear Independence
    • 3.4 Basis of a Subspace
    • 3.5 The Rank of a Matrix
    • 3.6 Chapter summary
    • 3.7 Problems
  • Chapter 4: Determinants

    • Abstract
    • 4.1 Developing the Determinant of A 2 × 2 and A 3 × 3 matrix
    • 4.2 Expansion by Minors
    • 4.3 Computing a Determinant Using Row Operations
    • 4.4 Application: Encryption
    • 4.5 Chapter Summary
    • 4.6 Problems
  • Chapter 5: Eigenvalues and Eigenvectors

    • Abstract
    • 5.1 Definitions and Examples
    • 5.2 Selected Properties of Eigenvalues and Eigenvectors
    • 5.3 Diagonalization
    • 5.4 Applications
    • 5.5 Computing Eigenvalues and Eigenvectors Using Matlab
    • 5.6 Chapter Summary
    • 5.7 Problems<


No. of pages:
© Academic Press 2014
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Author

William Ford

William Ford received his undergraduate education at MIT in applied mathematics and a Ph.D. in mathematics from the University of Illinois in 1972. His area of research was the numerical solution of partial differential equations, and the results of his work were published in three top-flight journals. After two years at Clemson University, he accepted an appointment at the University of the Pacific in Stockton, CA, where he taught mathematics and computer science. In 1986, he became a founding member of the Department of Computer Science that is now located in the School of Engineering and Computer Science. He served as Chair of the Department for eleven years and retired in 2014 as a recipient of the Order of Pacific, the highest award the University gives. Dr. Ford is the co-author of five computer science texts and two commercial software packages. For many years, he has taught computation for engineers, discrete mathematics, and computing theory. His interest in writing a book on numerical linear algebra arose from working with graduate engineering students. There is a tremendous need for engineers to be familiar with numerical linear algebra and its applications. Dr. Ford saw the need for the subject to be taught at the advanced undergraduate as well as the beginning graduate level. Yet, most engineering students have only applied linear algebra available to them, and books in the subject only touch on numerical aspects. The basics of linear algebra are necessary before a study of numerical linear algebra can begin, but few institutions can afford to offer two separate courses. As a result, he developed a book that in the early chapters provides the linear algebra necessary for a study of how to perform accurate computation in such problems such as solving general and specialized square linear systems, least-squares, computation of eigenvalues, and the iterative solution of large, sparse systems. The book contains many computational exercises and carefully ch

Affiliations and Expertise

University of the Pacific, Stockton, California, USA


"An important part of the book deals with iterative methods for solving large sparse systems. We can find here Jacobi, Gauss-Seidel and successive overrelaxation (SOR) methods, as well as Krylov subspace methods..." --Zentralblatt Math

"...this is a book that merits careful consideration as a possible text for a course in numerical linear algebra, particularly one stressing applications to engineering and other areas of science." --MAA Reviews, January 2015